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Chapter 1

Basic Models for Evaluating Asset
Returns

1.1 Introduction

This lecture is intended as an review of some important basic concepts in financial
econometrics. The reader is assumed to be familiar with most of the statistical
concepts, though not necessarily the applications in finance.1

1.1.1 Efficient Market Hypothesis

The efficient market hypothesis (EMH) states that asset prices fully reflect all avail-
able information. Under the EMH, prices change when there is a change in the
information set available to investors (i.e. news). By definition, ”news” cannot
be forecasted. All investors receive new information at the same time, and asset
prices change instantaneously. As a result there are no arbitrage opportunities. An
investor cannot make an economic profit by trading on the basis of the information
set. We can describe an asset price that follows the EMH as follows:

Et[Pt+1|It] = Pt (1.1.1)

where It is the information set available to investors at time, t. There are three
basic forms of the EMH relating to the degree of information available to investors.

1. Weak efficiency: The information set only includes the history of the prices
or returns themselves.

2. Semi-strong Efficiency: The information set includes all information available
to the public.

3. Strong Efficiency: The information set includes all information known to any
market participant (private information).

1Readers requiring additional background on time series should consult, Chatfield [6], or Hamil-
ton [9].

1



2 CHAPTER 1. BASIC MODELS FOR EVALUATING ASSET RETURNS

1.1.2 The Random Walk Model

The random walk (RW) statistical model is typically used to describe the movement
of asset prices. If asset prices, Pt, follow a random walk then,

Pt = µ+ Pt−1 + εt (1.1.2)

where µ is a drift term, and εt is iid(0, σ2).
Under the RW model, asset prices cannot be forecast, since the change in price

is due to an unobserved random disturbance term. The mean and variance of the
RW model at time t conditional on initial price, P0 are,

E[Pt|P0] = µtt (1.1.3)

V ar[Pt|P0] = σ2t (1.1.4)

Both the mean and variance are a linear function of time, so asset prices are assumed
to be nonstationary.

There are a several relevant variations on the random walk model, depending
on the assumptions made about εt.

2 A common assumption is that εt ∼ iid(0, σ2).
The independence assumption means that price increments are uncorrelated, and
that nonlinear functions of the increments are also uncorrelated. The identically
distributed assumption means that shocks to price are drawn from the same distri-
bution at all points in time.

An alternative, more realistic assumption, is to allow the distribution to change
over time. In this case εt is assumed to be independent and not identically dis-
tributed, or INID. Assuming that εt is drawn from different distributions seems
more realistic for a financial time series. For instance, it is reasonable to expect
that shocks to asset prices are drawn from a different distributions in times of
financial crisis.

A third alternative, the somewhat more realistic assumption, is that εt are
uncorrelated, dependent, and drawn from different distributions over time. One
example would be the following,

cov(εt, εt−k) = 0 for all k 6= 0. (1.1.5)

cov(ε2
t , ε

2
t−k) 6= 0 for all k 6= 0. (1.1.6)

(1.1.7)

In this case the innovations are uncorrelated, but dependent since the squared
innovations are correlated.

1.1.3 Calculating Returns

Let Pt be the price of an asset, then the simple one period return is defined as,

Rt =
Pt
Pt−1

− 1 (1.1.8)

2This section is a summary of an in-depth discussion of random walk models in Campbell, Lo,
and Mackinley [4].
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The simple return over k periods is defined as,

Rk
t =

Pt
Pt−k

− 1 (1.1.9)

If an asset pays dividends in period t, Dt, then the simple one period return is,

Rt =
[Pt +Dt]

Pt−1

− 1 (1.1.10)

The multi-period return over k years can be written as:

Rk
t =

Pt
Pt−1

× Pt−1

Pt−2

× . . .× Pt−k+1

Pt−k
(1.1.11)

Rk
t = (1 +Rt)(1 +Rt−1), . . . (1 +Rt−k1) (1.1.12)

The continuously compounded return of an asset is,

rt ≡ ln(1 +R1) = ln(
Pt
Pt−1

) (1.1.13)

The continuously compounded multi-period return is the sum of the continuously
compounded single period returns,

rkt ≡ ln(1 +Rk
t ) = ln((1 +Rt)(1 +Rt−1) + ...+ (1 +Rt−k+1)) (1.1.14)

rkt = rt + rt−1 + ...+ rt−k+1 (1.1.15)

1.1.4 A Model of Returns

A common statistical model of returns is,

rt+1 = µt + σtεt+1 (1.1.16)

where µt is the mean conditional on information as of t, and σt is the variance
conditional on information as of t. It is common to assume that εt ∼ iidN(0, σ2).
As we will see in the next section, the assumption of normality is inconsistent
with the styled facts of asset returns. Distributions of returns typically have fatter
tails than the Normal distribution, (i.e. excess kurtosis). Alternatively, is is often
assumed that εt ∼iid Student-t with ν degrees of freedom. This assumption is more
realistic than the normality assumption as the t-distribution has fatter tails.

Stationarity and Ergodicity

If prices are assumed to follow a random walk, returns (the difference in the log of
prices) will be a stationary series. Stationarity is a fundamental requirement for the
statistical analysis of returns. It is necessary if we want to use data across different
time periods to calculate moments.

Weak Stationarity - a stochastic time series is said to be weakly stationary if
following conditions hold,
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1. E[yt] is independent of t.

2. V ar[yt] is a finite, positive constant, independent of t.

3. Cov[yt, ys] is a finite function of —t-s— but not of t or s.

A stationary series does not have a trend.
In addition to stationarity, returns must also be ergodic. Ergodicity relates to

the consistency of a stationary time series process. Since a time series {xt} is a sin-
gle realization of some unobserved generating process, it is not entirely clear that a
sample mean taken over time will be a consistent estimator of the true mean at time
t. That is, at time t,we observe a single observation of x, but E[xt] is a property of
an ensemble of x’s at t.

Ergodic Theorem - a stationary process is ergodic if the sample moments converge
to the population moments. In the case of the first moment, ergodicity implies

x̄ = E(xt) = µ as N →∞ (1.1.17)

A sufficient condition for this to happen is that

ρk → 0 as k →∞. (1.1.18)

where ρk is the correlation of returns at time t and t− k. If the sufficient condition
holds, the process is called ergodic in the mean.

1.2 Stylized Facts about Asset Returns

Figure 1.1 is a plot of daily equity market excess returns from July 1, 1926 to
June 29, 2018. The data which is from the Kenneth French Data Library 3 is a
value weighted series of excess returns for all firm listed in the NYSE, AMEX,
and NASDAQ over the observation period. The risk free rate, which is also from
the Kenneth French Data library, is the yield on one month Treasury bills. Asset
returns as a class tend to exhibit a set of characteristics which are often described as
stylized facts. The market returns in Figure 1.1 have at least one readily identifiable
characteristic - clusters of volatility at different points in time. In this section, we
discuss a number of stylized facts about returns, including clustering. To a large
extent, all of the lectures in this book arise from research methods that have been
developed explain stylized facts about asset returns.4

1.2.1 Low or No Autocorrelation

Asset returns are not usually autocorrelated, except for small intraday scales (20
minutes). As a result, returns are difficult to predict. The extent to which returns
are predictable depends on:

3http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
4The list of stylized facts is based on the work of Cont [7]. Also, see Campbell, Lo, & Mackinlay

[4] for a related discussion.
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Figure 1.1: Daily Excess Returns to Equities - U.S.

• the forecast horizon,

• the degree of market volatility, and

• the stage of the business cycle.

Predictability tends to rise during crisis periods.

Definition of Autocorrelation Coefficient

The autocorrelation coefficient is the time series version of the correlation coef-
ficient. Given a covariance-stationary series rt the kth order autocovariance and
autocorrelation coefficient respectively, are:

γ(k) = cov(rt, rt+k) (1.2.1)

ρ(k) =
cov(rt, rt+k)√

var(rt)
√
var(rt+k)

=
cov(rt, rt+k)

var(rt)
=
γ(k)

γ(0)
(1.2.2)

where, var(rt) = var(rt+k).
The sample analogue for the autocovariance and autocorrelation are,

γ̂k =
1

T

T−k∑
t

(rt − r̄T )(rt+k − r̄t) (1.2.3)

ρ̂(k) =
γ̂(k)

γ̂(0)
(1.2.4)
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where, r̄t = 1
T

T−k∑
i=1

rt

Figure 1.2 shows the autocorrelation for the daily market returns shown in Figure
1.1. The data set contains 250 trading day observations per year, so the horizontal
axis of the plot shows daily autocorrelations for two years. The dashed horizontal
lines represent the 95% confidence interval for zero autocorrelation. There is some
evidence of small, but significant short term serial correlation, but only occasional
small spikes over the longer term.

Short term positive serial correlation is a common feature of portfolios. Possible
sources of serial correlation include time varying risk premia, bid-ask bounce, non-
synchronous trading effects such as using stale prices to calculate returns, and
partial price adjustment due to trades taking place when traders have incomplete
information.[1]

Serial correlation is generally less pronounced for individual firms. As an exam-
ple, Figure 1.3 shows autocorrelations for AT&T (excess) returns for 500 lags. The
degree short term autocorrelation observed in the market returns does not exist for
AT&T.

Figure 1.2: Autocorrelations for Daily Excess Returns to Equities - U.S.

Figure 1.3: Autocorrelations for Daily Excess Returns - AT&T
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1.2.2 Measuring Skewness and Kurtosis

For a random variable, x, the skew and kurtosis are

S(X) =
E[(x− µ)3]

σ3
(1.2.5)

K(X) =
E[(x− µ)4]

σ4
(1.2.6)

(1.2.7)

where S(x) is the skew, K(x) is the kurtosis, µ is the mean and σ is the standard
deviation of x. The sample analogues are:

Ŝ(x) =
1

T σ̂3

T∑
t=1

(xt − x̄)3 (1.2.8)

K̂(x) =
1

T σ̂4

T∑
t=1

(xt − x̄)4 (1.2.9)

(1.2.10)

where µ̂ is the sample mean, and σ̂2 is the sample variance In large samples of
normally distributed data the sample skewness and kurtosis are normally distributed
with means 0 and 3 and variances of 6/T and 24/T, respectively. Excess kurtosis
is defined as K(x) − 3. The Normal distribution has a kurtosis of 3, so the excess
kurtosis of the Normal distribution is zero (mesokurtic). A distribution with positive
excess kurtosis (leptokurtic) is said to have fat or heavy tails. Similarly negative
excess kurtosis (platykurtic) indicates short tails. A positive skew indicates that
the tail on the right side of a distribution is longer than the left side and the bulk
of the values lie to the left of the mean. A skew of zero indicates symmetry.

1.2.3 Asymmetry

The distribution of equity returns is often negatively skewed indicating that down-
turns are typically steeper than recoveries. Sample estimates of skewness for daily
US stock returns tends to be negative for stock indexes (a long left hand tail) and
close to zero or positive for individual stocks. Table 1.1 contains the skewness of
daily returns for the market and a set of media firms for the period January 2013
- June 2017. The market has a small negative skew, which is not apparent in the
density plot (Figure 1.4). The firm skew statistics tend to be positive, but some are
negative, and some are essentially zero.

1.2.4 Heavy Tailed Distributions

The unconditional distribution of asset returns typically has more mass in the tail
areas than would be predicted by a Normal distribution. Figure 1.4 compares the
density of returns for the market portfolio with the standard Normal distribution.
The market returns have a much narrower peak and wider tails than the Normal
distribution.



8 CHAPTER 1. BASIC MODELS FOR EVALUATING ASSET RETURNS

Mean Std. Dev. Skew Ex. Kurt
Mkt 0.06 0.80 -0.39 2.17

Alphabet 0.09 1.43 2.15 22.54
Amazon 0.13 1.86 0.47 10.32
AOL 0.11 2.40 0.04 16.51
Apple 0.07 1.54 -0.48 6.49
AT&T 0.01 0.94 -0.36 2.09
CBS 0.05 1.48 0.24 1.40
Disney 0.07 1.15 -0.47 6.90
Facebook 0.17 2.10 2.97 38.08
FOX 0.03 1.40 -0.11 3.95
Microsift 0.09 1.45 0.02 10.71
Netflix 0.26 3.10 3.14 38.51
Sony 0.13 2.08 0.84 6.89
Sprint 0.08 3.13 0.50 10.19
Twitter -0.04 3.49 -0.55 9.17
Verizon 0.01 1.01 -0.08 1.39

Table 1.1: Summary Statistics of Returns for a Sample of Media Firms

Figure 1.4: Distribution of Daily Excess Market Returns - U.S.
Red = standard Normal distribution, Blue = market portfolio

The excess kurtosis for the market portfolio for the period July 1, 1926 - June
29, 2018 is 16.7. Over the smaller sample period in Tabletab:sumstats, the market
portfolio has a kurtosis of 2.17.

Figure 1.6 shows the distribution of the absolution value of the 500 smallest
daily returns for the market portfolio. This distribution, with its long tail, has a
shape that resembles a Pareto distribution. Fat tails are an important feature of
asset returns. As shown in Figure 1.1 and 1.4, the variance of asset returns is high.
Understanding tail events is an important part of understanding the behavior of
returns as a whole.

The extreme values, or tail, of a distribution of returns are often modeled as
either a Pareto or power distribution.5 A power law is a mathematical relationship
between two quantities where a relative change in one quantity results in a pro-
portional change in the other quantity. A well known example is the 80/20 rule
or Pareto Principle which states that for many events, roughly 80% of the effects

5See Stanley, et.al.(2008) [18] for a discussion of the power law and finance.
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come from 20% of the causes. For assets we can write the power law as:

Pr[|rt| > x] ∼ x−α (1.2.11)

where rt is the asset return at t, and α is the power-law exponent. The generalized
Pareto distribution will be discussed in the lecture on extreme value theory.

Figure 1.5: Left Tail Distribution of Daily Excess Market Returns - U.S.

1.2.5 Intermittency

The term intermittency refers to the empirical observation that the volatility of
returns is high regardless of the time scale. Table 1.2 illustrates intermittency by
comparing the volatility of returns for the market portfolio using daily, monthly and
annual data. The daily and annual volatility calculations are re-scaled to a monthly
level assuming independence of returns across time.6 As shown in the table, the
volatility of the annual returns series exceeds the monthly series which exceeds the
daily series. Temporal aggregation does not reduce the volatility of returns.

Volatility
Daily 4.870663
Monthly 5.332363
Annual 5.891354

Table 1.2: Volatility of Market Returns Across Scale

1.2.6 Gaussianity

The distribution of returns is not the same across scale. That is, as returns are
aggregated across scale the distribution becomes more Normally distributed. Fig-
ure ?? shows QQ plots for daily, monthly and annual portfolio returns against a
theoretical Normal distribution. The QQ plots suggest that the daily and monthly
distributions are not Normal but the annual could be Normal. A formal test for
departure from normality is needed to provide further insight.

6Specifically, Daily vol. times
√

21; Annual vol. divided by
√

12
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Figure 1.6: QQ Plots of Market Returns by Scale

Testing for Normality

The Shapiro-Wilk (SW) test is a test of the null hypothesis that the data are
iidN(µ, σ2). The test statistic is,

SW =
(
∑n

i=1 aix
2
(i))∑n

i=1(xi − x̄)2
(1.2.12)

where x(i) is the ith order statistic.7 The null hypothesis is that the data is Normally
distributed.

An alternative, perhaps more commonly applied test for Normality, is the Jarque-
Bera test (JB). The JB statistic for departure from normality is given by,

JB = (T/6)(S2 + (1/4) ∗K2) (1.2.13)

where S is skewness and K is kurtosis. Under the null hypothesis that S = 0 and
K = 0 the JB statistic is asymptotically distributed as chi-squared with 2 degrees
of freedom. A JB statistic greater than 5.99 will reject the null hypothesis at the
95% level of confidence.

Table 1.3 shows the SW and JB statistics for returns of the market portfolio
at three scales. Both tests reject the null hypothesis for the daily and monthly
scale, but at the annual scale we are unable to reject the null hypothesis that the
distribution of returns is Normally distributed. The p-value for the annual JB test
statistic is 0.43, and for the annual SW test it is 0.524.

1.2.7 Volatility Clustering

High volatility events tend to cluster in time, so that measures of volatility tend
to exhibit positive autocorrelation. To illustrate this, we begin with the following

7The ith order statistic is the ith smallest number in the sample of xi.
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mean std. dev skew kurtosis SW JB Nobs
Daily 0.0293 1.0629 -0.1189 16.7461 0.9210 283586 24265
Monthly 0.6623 5.3324 0.1888 7.9444 0.9160 2910 1104
Annual 8.5044 20.4082 -0.3382 0.0075 0.9873 1.74 91

Table 1.3: Market Portfolio Statistics by Scale

simple model of returns:

rt = µ+ at (1.2.14)

where µ is estimated using the sample mean. We consider two measures of volatility,
a2
t , and |at|. The autocorrelations for these two measures are plotted in Figure

1.7 for daily market returns. Both measures of volatility exhibit strong positive
autocorrelation. Notice that the absolute value measure decays much slower than
the squared measure. Cont [7] points out that this is often interpreted as long range
dependence.

Figure 1.7 in conjunction with 1.2 illustrates an important characteristic of
asset returns. There is very little autocorrelation for the returns themselves, but
there is significant autocorrelation in the volatility of returns. Returns are serially
uncorrelated, but not independent.

Figure 1.7: ACF for Two measures of Volatility - Daily Market Returns

Unlike returns themselves, the absolute value of returns (or the square), are
serially correlated and tend to be predictable. If we re-write returns as

rt = sign(rt)|rt| (1.2.15)

where sign(rt) = +1 if rt > 0, (1.2.16)

and sign(rt) = −1 if rt < 0 (1.2.17)
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we see that since |rt| is predictable, the non-predictable part is sign(rt), or the
direction of the market.

1.2.8 Additional Characteristics of Volatility

There are a number of other characteristics of volatility that have been identified.
Here we provide a non-exhaustive list:

• Leverage Effects – most measures of volatility of returns are negatively cor-
related with the returns of the asset. A decline in the stock price of a firm
raises the firm’s financial leverage, resulting in an increase in the volatility of
equity. (Black (1976) [2], Christie (1982) [5]) This strong negative relation-
ship is shown in Figure 1.8 which displays returns for the S&P 500 against
the VIX.8

Figure 1.8: Returns and Volatility - S&P 500

• Non-trading Effects, Weekend Effects – when a market is closed information
accumulates at a different rate than when it is open. For example, there exists
a weekend effect, in which stock price volatility on Monday is not three times
the volatility on Friday. (French (1982) [11], French and Roll (1986) [12])

• Expected events – volatility is high at regular times such as news announce-
ments or other expected events, or even at certain times of day. For example,
equity returns are less volatile in the early afternoon.( Cornell (1978) [8],
Patell and Wolfson (1979) [16])

• Co-movements in volatility – Volatility is positively correlated across markets
and assets. (Ramchand and Susmel (1998) [17])

• Evolving – volatility tends to evolve over time in a continuous manner, and
jumps are rare.

8VIX is an index of implied volatility on options for the S&P 500
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• Stationary – volatility tends to vary within some bound, and does not go off
to infinity.

• Conditional Heavy Tails - the distribution of returns has heavy tails even after
accounting for volatility clustering.

1.3 Modeling the Conditional Mean of Returns

We have shown that the serial correlation in returns is low, but the serial correlation
in the volatility of returns can be quite significant. In this section we will review
the properties of three basic models, AR(1), MA(1) and the ARMA(1,1), each of
which can be used to model the conditional mean of returns.

The AR(1) Process

We begin with the AR(1) process. This simple model is used extensively in financial
econometrics. It is defined as follows:

rt = φ0 + φ1rt−1 + at (1.3.1)

Conditional on past returns, asset returns for an AR(1) process have the following
moments:

E[rt|rt−1] = φ0 + φ1rt (1.3.2)

var[rt|rt−1] = var(at) = σ2
a (1.3.3)

Using backward substitution we can write the AR(1) as,

rt = φ0(1 + φ1 + φ2
1 + . . .) + φ1at + φ2

1at−2 + . . . (1.3.4)

If |φ1 < 1 then

1 + φ1 + φ2
1 + . . . =

1

1− φ1

is a bounded sequence (1.3.5)

∞∑
j=0

|φj1| <∞ (1.3.6)

|φ1| < 1 is a necessary and sufficient condition for stationarity of the AR(1) process.
Assuming weakly stationarity, the unconditional mean and variance of the AR(1)
are,

rt =
φ0

1− φ1

+ φ1at + φ2
1at−2 + . . . (1.3.7)

µ = E[rt] =
φ0

1− φ1

(1.3.8)

γ0 = (1 + φ2
1 + φ4

2 + . . .) =
1

1− φ2
1

σ2
a (1.3.9)
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Note that φ2
1 < 1 is required to satisfy the non-negativity requirement of a variance.

The autocovariance of a stationary AR(1) process is:

rt − µ = φ1(rt−1 − µ) + at (1.3.10)

γj = E[(rt − µ)(rt−j − µ)]

= E[(φ1(rt−1 − µ) + at)(rt−j − µ)]

= φ1E[(rt−1 − µ)(rt−j − µ) + at(rt−j − µ)]

γj = φ1γj−1 (1.3.11)

The autocorrelation coefficient is,

ρj =
γj
γ0

= φ1
γj−1

γ0

= φ1ρj−1 (1.3.12)

(1.3.13)

where γ0 is the variance of rt. Using backward substitution yields,

ρj = φj1 (1.3.14)

• If 0 < φ1 < 1 the ACF decays exponentially.

• If <− 1 < φ1 < 0 the ACF consists of two alternating exponential decays.

Definition: Partial Autocorrelation Function (PACF)

The kth partial autocorrelation of xt is the autocorrelation of xt and xt+k after
removing the partial correlation of xt with xt+1 to xt+k−1. The definition can be
illustrated with the following set of AR regressions,

yt = α1,0 + α1,1yt−1 + e1t

yt = α2,0 + α2,1yt−1 + α2,2yt−2 + e2t

yt = α3,0 + α3,1yt−1 + α3,2yt−2 + α3,3yt−3 + e3t

The partial autocorrelation coefficients are α1,1, α2,2, α3,3. For an AR(p) process,
the partial autocorrelation function (PACF) will be zero for lags greater than p. As
a result, the PACF can be used to identify the number of lags in an AR(p) process.

The MA(1) Process

Let {at} be a zero-mean white noise process. The MA(1) process is defined as

rt = µ+ at − θat−1 (1.3.15)

The expected value and variance are,

E[rt] = µ (1.3.16)

var[rt] = σ2
a + θ2σ2

a = σ2
a(1 + θ2) (1.3.17)
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The 1st order autocovariance is,

E[(rt − µ)(rt−1 − µ)] = −θσ2
a (1.3.18)

The autocovariance for lags greater than one is,

E[(rt − µ)(rt−j − µ)] = E[(rt − µ)(rt−j − µ)] = E[(at − θat−1)((at−j − θat−j−1)]

= E(atat−j − θat−1at−j − θatat−j−1 + θ2at−1at−j−1) = 0 for j > 1.
(1.3.19)

The autocorrelation is,

ρ0 = 1 (1.3.20)

ρ1 =
γ1

γ0

=
−θσ2

a

(1 + θ2)σ2
a

=
−θ

(1 + θ2)
(1.3.21)

ρj = 0 for j > 1 (1.3.22)

For the MA(1) process, the ACF is zero for lags greater than one.
An MA(1) process is always covariance stationary. The mean, variance, and

ACF are invariant over time. Note that we did not have to place any restrictions
on θ to establish stationarity.

If we do not place any additional restrictions on the MA(1) model, it will not
be uniquely identified. The identification problem is a consequence of observing rt
but not at.

The following two MA(1) processes have the same ACF (i.e. eq. 1.3.22 ):

rt = at − θat−1 (1.3.23)

rt = at −
1

θ
at−1 (1.3.24)

Which model should we choose? If we invert the two models we get,

at = rt + θrt−1 + θ2rt−2 + . . . (1.3.25)

at = rt +
1

θ
rt−1 +

1

θ2
rt−2 + . . . (1.3.26)

If |θ| < 1, then the series of coefficients converges for model A (eq. 1.3.25) and
diverges for model B (eq. 1.3.26). Model A is said to be invertible, but model B
is not. The invertibility condition ensures that there is a unique MA process for a
given ACF.

Invertibility of an MA(q) Process
An MA(q) process defined as

rt = θq(L)at (1.3.27)

is said to be invertible if there exists a sequence of constants {πj} such that

∞∑
j=0

|πj| <∞ (1.3.28)
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and

at =
∞∑
j=0

πjrt−j, t = 0,±1,±2, . . . , (1.3.29)

A process is invertible if the random disturbance at time t can be expressed as a
convergent sum of present and past values of rt. In effect, invertibility means the
MA process can be written in the form of an AR process.

Finally, note that the PACF for the MA(1) process never cuts off so it cannot
be used to identify the order of an MA(p) process. However, the ACF of an MA(q)
process is zero for lags greater than q, so it can be used to identify the order of an
MA process.

The ARMA(1,1) Model

The ARMA(1,1) model is defined as,

rt = φ0 + φ1rt−1 + at − θat−1 (1.3.30)

The properties of the ARMA(1,1) model are the same as the AR(1) model with
some modifications for the MA component.

E[rt] = φ0 + φ1E[rt] =
φ0

(1− φ1)
(1.3.31)

var[rt] =
(1− 2φ1θ + θ2)σ2

a

1− φ2
1

(1.3.32)

The stationarity condition is the same as the AR(1): |φ1| < 1. The ACF of the
ARMA(1,1) is:

ρ1 =
θσ2

a

γ0

, ρl = φ1ρl−1 for l > 1. (1.3.33)

This ACF is similar to that of an AR(1) model except that the exponential decay
starts at lag=2. The PACF is similar to that of an MA(1) model in that it does
not cut off at a specific lag. The ACF and PACF are not useful for determining the
order of an ARMA model. A common approach for identifying the order is to use
an information criteria. That is, estimate multiple models consisting or different
orders for the AR and MA processes, and select the model with the minimum AIC
or BIC.

1.4 Modeling Volatility - GARCH Models

The traditional time series regression model assumes that the variance is constant
over time. Consider the following simple dynamic model:

Yt = α + βyt−1 + et
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The unconditional variance is constant,

E[(yt − E(yt))
2] = σ2/(1− β)

The conditional variance is,

V art−1(Yt) = Et−1[(yt − Et−1(yt))
2] = Et−1[(yt − α− βyt−1]2 = Et−1[e2

t ]

The traditional time series model assumes that the conditional variance is also
constant. This assumption is contradicted by the stylized facts, in particular the
fact that volatility tends to cluster, and distributions of returns have fat tails.

The ARCH (Engle, 1982), and the Generalized ARCH (Bollerslev, 1982 [3])
allow the conditional variance to change over time. Given our simple model of
returns, rt = µt + at, the ARCH model specifies the conditional variance as a
function of lagged errors,

at = σtεtσt = α0 + α1a
2
t−1 + . . .+ αma

2
t−m (1.4.1)

where {εt} is a sequence of iid random variables with a mean of zero and a variance
of one. α0 > 0 αi ≥ 0 for i 6= 0,

The GARCH(m,s) model is a more generalized structure than the ARCH model
that allows for a more parsimonious model. Bollerslev notes that GARCH gener-
alizes ARCH in much the same way that ARMA generalizes the AR model. The
GARCH(p,q) model is specified as follows:

at = σtεt (1.4.2)

σ2
t = α0 +

p∑
i=0

αia
2
t−1 +

q∑
j=1

βjσ
2
t−j (1.4.3)

where, εt ∼ iid(0, 1), α0 >,αi ≥ 0, βj ≥ 0, (1.4.4)

and,

max(p,q)∑
i=1

(αi + βj) < 1. (1.4.5)

To understand the properties of the GARCH model, we can focus on the GARCH(1,1)
model:

σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1 (1.4.6)

where, α0 > 0, α1 ≥ 0, β1 ≥ 0,

and, (α1 + β1) < 1. (1.4.7)

Properties of the GARCH(1,1) Model

1. The inequalities in 1.4.7 ensure weak stationarity,

2. If σ2
t−1 is large, σ2

t will be large, so that the GARCH specification can exhibit
clustering of volatility.

3. If 3α2
1 + 2α1β1 + β2

1 < 1 then excess kurtosis exceeds zero, so the process has
fat tails.

4. The GARCH specification allows for the evolution of volatility over time.



18 CHAPTER 1. BASIC MODELS FOR EVALUATING ASSET RETURNS

Forecasting the GARCH(1,1)

The 1 step ahead forecast for a GARCH(1,1) model is:

σ̂2
t+1 = α0 + α1a

2
t + β1σ

2
t (1.4.8)

Setting a2
t = e2

tσ
2
t

σ̂2
t+2 = α0 + (α1 + β1)σ2

t + a1σ
2
t (e

2
t − 1) (1.4.9)

The two step ahead forecast is,

σ̂2
t+2 = α0 + (α1 + β1)σ̂2

t (1.4.10)

The k-step ahead forecast is,

σ̂2
t+k = α0 + (α1 + β1)σ̂2

t+k−1, k > 0 (1.4.11)

Generally speaking, since volatility is unobserved it is difficult to evaluate a forecast.
Sometimes out of sample forecasts of σ2

t+k are compared to a2
t+k. But while a2

t is a
consistent estimator of σ2

t it is not an efficient estimator, so there is little reason for
a single observation of the two to be similar, and they usually are not.

1.4.1 ACF for the GARCH Model

The autocorrelation for a GARCH(p,q) is,

ρn = γnγ
−1
0 =

m∑
i=1

ϕiρn−1 (1.4.12)

where ϕi = αi + βi and m = max(p, q), (1.4.13)

and γn = cov(ε2
t , ε

2
t−n) (1.4.14)

Example 1.1. In this example, we model the mean and conditional variance of daily
returns for the S&P 500. The mean specification is ARMA(1,1). The conditional
volatility specification is a GARCH(1,1). The two models are estimated jointly using
the ’rugarch’ package in R. The output is shown in Figure 1.10. The distribution
of standardized residuals from the GARCH model.

The 3 GARCH parameters, ω, α, and β, are all non-negative, and α + β < 1,
so the weak stationarity condition is satisfied. In addition, the stationarity and
invertibility conditions are satisfied for the ARMA(1,1) model. The ACF of the
normalzed residuals, shown in Figure 1.11, indicates that the model residuals are
white noise.
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Figure 1.9: S&P 500 - Daily Prices and Returns

Figure 1.10: GARCH Model output

1.5 The Log Normal Stochastic Volatility Model

Stochastic volatilities (SV) models represent an alternative to the ARCH/GARCH
approach of modeling time varying volatility. In contrast to the ARCH/GARCH
models which are often described as observation driven, SV models are often de-
scribed as parameter driven. SV models are essentially state-space models, which
is intuitively appealing, since volatility is unobservable. Volatility represents the
arrival of new information into the market and consequently it is unobserved.

The basic SV model with continuous volatility is defined as follows:

yt = εtexp(ht/2) (1.5.1)

ht = α + βht−1 + ηt (1.5.2)

where yt are continuously compounded returns, ht is log-volatility, εt and ηt are
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Figure 1.11: ACF of Standardized Residuals and Squared Residuals

two independent Gaussian white noises with variances 1 and σ2
η, respectively. This

model is typically referred to as the log-normal SV model.

Properties of the SV Model

The SV model will be stationary if |b| < 1, with:

µh = E(ht) =
α

(1− β)
(1.5.3)

σ2
h = var(ht) =

σ2
η

(1− β2)
(1.5.4)

E(y4
t )

E[E(y2
t )]

2
= exp(σ2

h) ≥ 3 (1.5.5)

ρy2t (r)
∼=

exp(σ2
h − 1)

3exp(σ2
h − 1)

β′ (1.5.6)

• Since εt is always stationary, yt will be stationary iff ht is stationary.

• The memory of yt is defined by the memory of the latent ht, which is an AR(1)
process.

• The kurtosis is not bounded as it is for the GARCH models.

• The SV model is leptokurtotic (fat tails).(Eq.1.5.6)

• If β < 0, ρy2t (r) can be negative, unlike the ARCH model.
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1.6 Applications in Finance

1.6.1 Measuring the impact of news on volatility

The GARCH(1,1) model is widely used to model the volatility of asset returns,
and while it captures several of the key empirical properties of returns, it does not
capture the asymmetric or leverage effect of volatility. The leverage effect occurs
when an unexpected drop in the price of a stock results in a greater increase in
volatility than an unexpected increase in the price of the stock.

Several variations of the original GARCH model have been introduced to capture
asymmetry. One such model is the exponential GARCH or eGARCH, Nelson (1990)
[15]. The eGARCH model is designed to capture the impact of differences in positive
and negative news, as well as small and large news events.

The eGARCH(1,1) model is specified as follows,

log(σ2
t ) = ω + β · log(σ2

t−1) + γzt + α
[
|zt|+ E|zt|

]
(1.6.1)

where zt ∼ NID(0, 1)9, and the parameters are not constrained to be non-
negative. Under the assumption of Normality, E[|zt] =

√
2/π.

Asymmetry is captured via the sign of zt. The magnitude effect is captured by
the term, α

[
|zt|+E|zt|

]
. For instance, if γ > 0 then difference |zt| −E|zt| will have

a positive impact on log(σ2
i ) that increases as the difference increases.

Parameter estimates for the eGARCH(1,1) model using the daily returns for
the S&P500 are shown in Figure 1.12. The estimate of α1 is negative10, indicating
the presence of the leverage effect. When news is negative volatility increases, and
when news is positive volatility decreases.

Figure 1.12: eGARCH-S&P 500 Daily Returns

Another GARCH model designed to capture asymmetry is the GJR (Glosten,
Jagannathan, Runkle, 1989 [13]) model. This model captures asymmetry by in-
troducing an indicator variable, St that is 1 if the news event is negative and zero
otherwise. The model specification is,

σ2
t = ω + βσ2

t−1 + αe2
t−1 + γe2

t−1S
−
t (1.6.2)

9zt = et
√
σ2
t , where et is the residual from the mean filtration proces. (e.g. ARMA)

10The parameter estimate alpha1 in the R package rugarch output, is called γ in equation 1.6.1.
Similarly, gamma1 in the R output is α in equation 1.6.1.
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where S−t = 1 if et−1 < 0 and 0 otherwise.
Parameter estimates for the eGARCH(1,1) model using the daily returns for

the S&P500 are shown in Figure 1.13. The estimate of gamma is positive and
significant, suggesting the presence of a leverage effect. Interestingly the estimate
of α is not statistically different from zero.

Figure 1.13: gjrGARCH-S&P 500 Daily Returns

Engle and Ng, (1993) [9] propose a method for determining the appropriate
GARCH specification based on the impact of news on volatility. In the case of
the GARCH model, the news-impact curve is defined by holding all information
at t − 2 and earlier constant, and examining the relationship between et−1 and
σ2
t . The curve assumes that all of the conditional variances are evaluated at the

unconditional variance of the stock returns. The news-impact curve measures the
impact of news at t− 1 on volatility at t.

For the standard (Gaussian) GARCH model the news-impact curve is a quadratic
with its minimum centered at et−1. For the eGARCH model, the minimum is at
et−1 but the curve is not symmetric. Specifically, for the eGARCH model the news-
impact curve is,

σ2
t = A ·

[
γ + α

σ
· et−1

]
for et−1 > 0 (1.6.3)

σ2
t = A ·

[
α− γ
σ
· et−1

]
for et−1 < 0 (1.6.4)

where,

A = σ2βexp
[
ω − α

√
2/π
]

(1.6.5)

For the GJR Garch model, the news-impact curve is,

σ2
t = A+ α · e2

t−1 for et−1 > 0 (1.6.6)

A = ω + β ∗ σ2 (1.6.7)

where σ2 is the unconditional variance.
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The news-impact curve for the GARCH(1,1), eGARCH(1,1), and gjrGARCH(1,1)
models fit to the daily returns for the S&P 500 are shown in Figure 1.14. The stan-
dard GARCH model has a symmetric news impact curve, while the eGARCH and
gjrGARCH models display an increase in volatility when there is bad news, and
no change in volatility when there is good news. In this example the GJR curve
increases faster than the other two models when there is bad news.

Figure 1.14: News Impact Curves

If a negative shock has a larger impact on volatility than a positive shock the
STANDARD GARCH model WILL under forecast the impact of news on volatility
for negative shocks and over forecasT the impact of news on volatility for positive
shocks. Also, if a large shock has a greater impact than predicted by a quadratic
function, the standard GARCH model under predicts volatility after a large shock
and over predicts volatility after a small shock.

Engle and Ng propose a set of diagnostic tests based on the news-impact curve.
The tests consider whether or not it is possible to predict the squared normalized
residual by variables that are not included in the GARCH model. The model
specification can be represented as,

log(σ2
t ) = log(σ2

0) + δaz0 (1.6.8)

where σ2
0 is the GARCH model being tested, and z0 is a matrix of additional vari-

ables. Under the null hypothesis the parameters δa = 0.
The three tests proposed by Engle and Ng are the following,

• The sign bias test,

log(σ2
t ) = a+ δ1 · S−t−1 + b · log(σ2

0) (1.6.9)

• The positive sign bias test,
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log(σ2
t ) = a+ δ2 · S+

t−1et−1 + b · log(σ2
0) (1.6.10)

• The negative sign bias test,

log(σ2
t ) = a+ δ3 · S−t−1et−1 + b · log(σ2

0) (1.6.11)

where, S−t−1 = 1 if et−1 < 0 and zero otherwise, and S+
t−1 = 1 if et−1 < 0, and zero

otherwise. For each test the null hypothesis is that b = 0. A t-test is applied to the
estimate of δ for each individual test. If the correct volatility model is being used,
the coefficient estimate for δ will not be significantly different from zero.

Figure 1.15 contains the results of the bias tests for the standard GARCH and
eGARCH models using the S&P 500 data. The test rejects the null hypothesis of no
sign bias (equation 1.6.9) for the standard GARCH model but not for the eGARCH
model. The standard model appears to have positive sign bias (equation 1.6.10 for
this particular data set. The eGARCH model also suggests the presence of positive
sign bias even though the sign bias test (equation 1.6.9) indicated that there was
no sign bias. This illustrates the importance of the specific (positive and negative)
sign bias tests. Negative sign bias is not significant at the 95% level of confidence
for the eGARCH model, but it is significant for the standard GARCH model.

Figure 1.15: Sign Bias Tests - Daily S&P 500 Returns

The joint effect test is a chi-square test for all three coefficients. The null
hypothesis for the joint effect test is δ1 = δ2 = δ3 = 0. Figure 1.15 indicates that
the joint null hypothesis is rejected for both model specifications.
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1.7 Exercises

1. Show that,

cov(rt, rt−1) = −θσ2
a (1.7.1)

when rt follows the MA(1) process,

rt = µ+ at − θat−1 (1.7.2)

2. In exercise 1.1 the daily returns of the S&P500 were assumed to follow an
AR(1,1) + GARCH(1,1) specification. Is this the minimum AIC specification?
Justify your answer.

3. Using daily returns for the S&P 500 for Jan. 02 2000 through December 31
2018 estimate a GJR-GARCH model, and apply the sign bias tests. Interpret
the results.

1.8 R Code for Examples

1.8.1 Example 1.1

library(PerformanceAnalytics)

library(xts)

library(rugarch)

date<-as.Date(paste(SPY$date), "%m/%d/%Y")

spy<-xts(SPY[,2], order.by=date)

par(mfrow=c(2,1))

plot.xts(spy)

spyrets<-CalculateReturns(spy)

plot(spyrets)

spec = ugarchspec()

fit = ugarchfit(spec = spec, data = na.omit(spyrets))

show(fit)

1.8.2 Measuring the impact of news on volatility

#Estimate GARCH models

spec = ugarchspec()

fitB = ugarchfit(spec = spec, data = na.omit(spyrets))

show(fitB)

spec1 = ugarchspec(variance.model=list(model="eGARCH"))

fit1 = ugarchfit(data = na.omit(spyrets), spec = spec1)

show(fit1)

# note that newsimpact does not require the residuals (z) as it
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# will discover the relevant range to plot against by using the min/max

# of the fitted residuals.

spec2 = ugarchspec(variance.model=list(model="gjrGARCH"))

fit2 = ugarchfit(data = na.omit(spyrets), spec = spec2)

show(fit2)

#News impact curves

niB=newsimpact(z = NULL, fitB)

ni1=newsimpact(z = NULL, fit1)

ni2=newsimpact(z = NULL, fit2)

plot(niB$zx, niB$zy, ylab=niB$yexpr, xlab=niB$xexpr, type="l", main = "News Impact Curve - GARCH(1,1)",col="Red",lwd=2)

lines(ni1$zx, ni1$zy, ylab=ni1$yexpr, xlab=ni1$xexpr, type="l", main = "News Impact Curve - eGARCH(1,1)",col="Blue",lwd=2)

lines(ni2$zx, ni2$zy, ylab=ni2$yexpr, xlab=ni2$xexpr, type="l", main = "News Impact Curve - GJR-GARCH(1,1)",col="Green",lwd=2)

legend("bottomleft", legend=c("Gaussian","EXP","GJR"),col=c("Red","Blue","Green"),lty=1)

#Sign bias tests

signbias(fitB)

signbias(fit1)

signbias(fit2)
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Chapter 2

Generalized Method of Moments

2.1 Introduction

The Generalized Method of Moments, or GMM, (Hansen, 1982) is an extension
of Pearson’s method of moments (MoM) which was developed in the 1890’s and
early 1900’s [25], [26]. The method of moments is based on an analogy principle
that makes use of the Law of Large Numbers’ assurance that sample moments are
consistent estimators of population moments.

Assume that we have a set of random variables (x1, x2, . . . , xn) drawn from the
density f(x|θ) where θ is an unknown parameter. The mean of x is defined as,

µ1 =

∫ +∞

−∞
xif(x|θ)dx = h1(θ) (2.1.1)

By the law of large numbers (LLN),

µ̂1 = x̄ =
1

N

N∑
i=1

xi → µ1 as n→∞ (2.1.2)

For large n, the population mean, h1(θ) will be well approximated by the sample
mean.

µ̂1 = h1(θ) (2.1.3)

The moment estimator of the mean, denoted θ̂, is the solution to the following
equation,

µ̂1 = h1(θ̂) (2.1.4)

Now we will generalize this concept for a vector of parameters, Θ = (θ1, θ2, . . . , θk).
Define the kth population moment as,

µk =

∫ +∞

−∞
xki f(x|Θ)dx = hk(Θ) (2.1.5)

The sample analogue for the kth moment is,

µ̂k =
1

N

N∑
i=1

xki (2.1.6)

29
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In general, the population moments (µ1, µ2, . . . , µk) will be functions of the popu-
lation parameters,

µj = hj(θ1, θ2, . . . , θk) (2.1.7)

Replacing the left hand side of equation 2.1.7, with the sample moment µ̂j yields

the moment estimator, θ̂.

µ̂j = hj(θ̂1, θ̂2, . . . , θ̂k) (2.1.8)

We assume that hk(.) involves some or all of the parameters of the distribution.
To estimate the K parameters we define K moment equations,

µ̂1 − h1(θ̂1, . . . , θ̂k) = 0

µ̂2 − h2(θ̂1, . . . , θ̂k) = 0

...

µ̂k − hk(θ̂1, . . . , θ̂k) = 0 (2.1.9)

This system has K equations and K unknowns, θ1, . . . , θk.
The methods of moments estimators are obtained by solving the system of equa-

tions,

θ̂1 = g1[µ̂1, µ̂2, . . . , µ̂k]

θ̂2 = g2[µ̂1, µ̂2, . . . , µ̂k]

...

θ̂k = gk[µ̂1, µ̂2, . . . , µ̂k] (2.1.10)

For j = 1, . . . , k, if h−1
j exists, then h−1

j = gj, and θ̂j = gj(µ̂j) is a unique

moment estimator. If h−1
j does not exist then any solution of µ̂j = gj(θ̂j) is a

moment estimator.
Although moments based on powers of x provide a natural source of information

about the parameters of a distribution, other functions of the data may also be
useful. Note also, that there may be more than one set of moments that can be
used for estimating the parameters, and there may also be more moment equations
available then necessary.

Properties of the MoM Estimator

The MoM estimator has the following properties,

• The law of large numbers (LLN) implies that the moments are consistent
estimators of their population counterparts.

• The moments are sample means, therefore the central limit theorem applies
so they are asymptotically normal.

• The MoM estimators are not usually efficient estimators, but they will be if
the moments are derived from the sufficient statistics.
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2.1.1 Some MoM Estimators

As an illustration of the method of moments, suppose that we want to estimate the
population mean µ and variance σ2 of a random variable xt. These two parameters
satisfy the population moment conditions:

E[xi]− µ = 0 (2.1.11)

E[x2
i ]− (σ2 + µ2) = 0 (2.1.12)

Substituting the expected values with their sample analogues gives,

1

N

n∑
i=1

xi − µ = 0 (2.1.13)

1

N

n∑
i=1

x2
i − (σ2 + µ2) = 0 (2.1.14)

These two equations imply,

µ̂ =
1

N

n∑
i=1

xi (2.1.15)

σ̂2 =
1

N

n∑
i=1

(xi − µ̂)2 (2.1.16)

Method of Moments - OLS

The OLS estimator can be shown to be a method of moments estimator. Define
the population regression as, y = xβ + u, where y ∼ n× 1, β ∼ k × 1, X ∼ n× k
and u ∼ n× 1. Assume that the first column of the X matrix contains ones.

The following k population moment conditions are assumed to hold:

E[Xu] = 0 (2.1.17)

This condition states that the disturbance terms and the k variables in the matrix
X are orthogonal. This condition can be re-written as:

E[X(y −Xβ)] = 0 (2.1.18)

The corresponding K sample moments are

1

n

n∑
i=1

xi,j(yi − x′iβ̂) for j = 1, . . . , K. (2.1.19)

Recall that the first column of the X matrix is a column of ones.
The MoM approach requires that we find an estimator for β that sets expression

2.1.19 equal to zero. The OLS estimator β̂ = (X ′X)−1Xy satisfies this requirement.
This can be seen by noting that,

1

n

n∑
i=1

xi(yi − x′iβ) = X ′y −X ′Xβ (2.1.20)
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Method of Moments - MLE

The maximum likelihood estimator is also a method of moments estimator. Suppose
we have the following likelihood function:

1

N
lnL =

1

N

N∑
i=1

lnf(yi, |xi, θ) (2.1.21)

Define the population expectations as,

E
[∂f(yi|xi, θ)

∂θk

]
= 0, k = 1, . . . , K (2.1.22)

The maximum likelihood estimator is obtained by equating the sample analog to
zero and solving for the parameters:

1

N

∂lnL

∂θk
=

1

N

N∑
i=1

∂f(yi|xi, θ)
∂θk

= 0 (2.1.23)

Method of Moments - Instrumental Variable

This application of the method of moments represents a very early statistical solu-
tion to the problem of an endogenous explanatory variable. Consider the following
supply and demand system of equations (Wright, 1928, [27]):

qDt = αpt + uDt (2.1.24)

qSt = β1nt + β2pt + uSt (2.1.25)

qDt = qSt = qt (2.1.26)

where pt is price, qt is quantity, nt is an exogenous variable, and all variables are
expressed as deviations from their means. Suppose that we want to estimate the
demand equation. qDt = αpt + uDt How do we estimate α given qt and pt? Since pt
is endogenous, pt and uDt are correlated.

The OLS estimate of α̂ will be biased and inconsistent. 1 Wright’s solution was
to use an instrumental variable, ZD

t , such that,

cov(zDt , u
D
t ) = 0 (2.1.28)

cov(zDt , pt) 6= 0 (2.1.29)

The first condition (eq. 2.1.28) states that the residual and the instrument must
be uncorrelated. The second condition (eq. 2.1.29) states that the instrument and
the endogenous variable must be correlated. The population moment condition is,

cov(qDt , z
D
t )− α · cov(zDt , pt) = 0 (2.1.30)

1The bias can be illustrated as follows:

α̂ =
σ(qDt · py)

Σp2t
=

Σ(α · pt + uDt · py)

Σp2t
=

Σ(α · p2t + uDt · py)

Σp2t
= α+

Σ(uDt · pt)
Σp2t

(2.1.27)

Since E(Σ(uDt · pt)) 6= 0 , E(α̂) 6= α
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If E[UD
t ] = 0 then

E(qDt z
D
t )− αE(zDt pt) = 0 (2.1.31)

The method of moments estimator is,

α̂ =
(
T−1

∑T

i=1
zDt q

D
t

)
/
(
T−1

∑T

i=1
zDt p

D
t

)
(2.1.32)

This is an instrumental variables estimator using instrument zDt .

2.1.2 Sufficient Statistics and Factorization2

Unlike the maximum likelihood estimator, the method of moment estimator is not
usually an efficient estimator. However, when sufficient statistics exist, the method
of moments estimator can be functions of them. In this case the methods of mo-
ments estimator will also be the maximum likelihood estimator.

Assume that a random sample, {x1, x2, . . . , xn}, is drawn from some distribu-
tion f(x|θ), where θ is an unknown parameter. The goal of parameter estimation
is to estimate θ from the random sample. A statistic Ck(x1, x2, . . . , xn) is said to
be sufficient for θ if the conditional distribution of {x1, x2, . . . , xn}, given Ck = c,
does not depend on θ for any value of c. The sufficient statistic, Ck, contains all
of the information needed to estimate θ. We cannot learn more about θ with any
additional knowledge of the probability distribution of {x}.

Fischer-Neyman Factorization Theorem

The factorization theorem facilitates the identification of a sufficient statistic. A
statistic Ck(x1, x2, . . . , xn) is a sufficient statistic for θ if and only if the joint density
function f(x|θ) can be factorized as follows,

f(x|θ) = u(x)v(Ck(x), θ) (2.1.33)

The functions u and v are non-negative. The function u may depend on x, but it
only does not depend on θ. The function v depends on θ, but only depends on the
observed value x through the value of the statistic Ck(x).

The sufficient statistic(s) of a sample is (are) all that we need to estimate the
parameter(s) of the distribution. In addition, the maximum likelihood estimate of
a parameter will be a function of the sufficient statistic, and in many cases the
sufficient statistic will the maximum likelihood estimate itself.

Exponential Form3

If a random variable belongs to the exponential family then the sufficient statistics
are particularly easy to identify. The exponential family includes a number of well

2This discussion on sufficient statistics and factorization is based on Degroot and Schervish
(2011) [7]

3See Morris and Lock [23] for further discussion on the properties of the exponential family
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known distributions including the beta, normal, binomial, Poisson, and gamma
distributions. A random variable x is a member of the exponential (parametric)
family of distributions if the probability density function has the form:

f(xi) = exp
[
A(xi) +B(θ) +

k∑
k=1

Ck(xi)Dk(θ)
]

(2.1.34)

where k is the number of parameters in the distribution. The exponential family
has the same number of sufficient statistics as it has parameters.

In the case of a single parameter exponential density (k=1) the joint density for
n observations of xi is,

f(x) =
n∏
i−1

f(xi) = exp

[
n∑
i=1

A(xi)

]
exp

[
nB(θ) +D1(θ)

n∑
i=1

C1(xi)

]
(2.1.35)

where x is an n × 1 vector consisting of x1, x2, . . . , xn. The term,
∑n

i=1C1(xi), is
the sufficient statistic for θ.

Example 2.1. The Bernoulli distribution is a discrete probability distribution of
a random variable, x, which takes a value of 1 with probability, θ, and a value of 0
with a probability of q = 1− θ.

Its mean and variance are,

E[x] = θ (2.1.36)

V AR[x] = q · θ (2.1.37)

The probability mass function (pmf) for a single Bernoulli random variable is,

P (X = x) = θx(1− θ)1−x for x = 0 or, x = 1 (2.1.38)

This pmf, which has a single parameter, θ, can be written in exponential form,

P (X = x) = exp

[
xlog

(
θ

1− θ

)
+ log(1− θ)

]
(2.1.39)

A sample of n independent Bernoulli trials has the following distribution.

p(x1, . . . , xn) = θ
∑n
i=1 xi(1− θ)

∑n
i=1 xi (2.1.40)

Writing equation 2.1.40 in exponential form shows that,

Sufficient Statistic for θ =
n∑
i=1

xi (2.1.41)
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Exponential form for a K-parameter density

In general, for a k parameter density in the exponential family, the likelihood func-
tion has the form,

f(x; Θ) = A(x) +B(Θ) +
∑K

k=1
Ck(x)Dk(Θ) (2.1.42)

where, Θ = {θ1, θ2, . . . , θk}, A(.), B(.), Ck(.) and Dk(.) are functions. If the pdf is
of this form, then the k functions

∑n
i=1Ck(xi) are sufficient statistics.

For instance, if k = 2, then the two sufficient statistics are
∑n

i=1C1(xi) and,∑n
i=1C2(xi).

Example 2.2. The normal distribution is a member of the exponential family with
two sufficient statistics. The density for a single observation, xi is,

f(xi) =
1√

2πσ2
exp

[
− 1

2

(xi − µ)2

σ2

]
(2.1.43)

The joint density for n iid Normal variables is,

f(x) =

[
1√

2πσ2

]n
exp

[
− 1

2

∑n
i=1(xi − µ)2

σ2

]
(2.1.44)

This can be re-written in standard exponential family form (i.e. equation 2.1.42)
as follows,

f(x) = exp

[
log

(
1√

2πσ2

)n]
exp

[
− 1

2σ2

(
n∑
i=1

x2
i −µ

n∑
i=1

xi+
n∑
i=1

µ2

)]
(2.1.45)

This can be simplified to,

f(x) = exp

[
− 1

2σ2

n∑
i=1

x2
i −

µ

σ2

n∑
i=1

xi −
nµ2

2σ2
− nlog

√
2πσ2

]
(2.1.46)

The sufficient statistics are:

m1 =
1

N

N∑
i=1

xi (2.1.47)

m2 =
1

N

N∑
i=1

x2
i (2.1.48)

The two moment equations are,

µ̂ = m1 (2.1.49)

σ̂2 = m2 −m2
1 =

N∑
i=1

(xi − x̄)2 (2.1.50)

The estimators for the mean and variance derived from these sample moments (see
Pearson’s Model) are also the maximum likelihood estimators. (see Exercise 1 ).
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Example 2.3. The beta distribution is also member of the exponential family
with two sufficient statistics. It is defined on the range of (0,1). It has two shape
parameters α and β which allow it to take a number of very different configurations.
For instance, if α = β = 0.5 the pdf is u-shaped, whereas if α = β = 2 the pdf is
hump-shaped. The beta distribution is the conjugate prior for Bernoulli, binomial,
negative binomial and geometric distributions which makes it a very ”popular”
distribution in Bayesian inference. The beta density is defined as,

f(xi;α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1
i (1− xi)β−1 (2.1.51)

where α > 0, β > 0 and xi ∈ (0, 1). This can be written in exponential form,

f(xi;α, β) = exp

(
(α− 1)log(xi) + (β− 1)log(1− xi) + log

Γ(α + β)

Γ(α)Γ(β)

)
(2.1.52)

The joint density in exponential form for xi (i = 1, . . . , N) is,

f(x;α, β) = exp

[
(α−1)

N∑
i=1

log(xi)+(β−1)
N∑
i=1

log(1−xi)+nlog
Γ(α + β)

Γ(α)Γ(β)

]
(2.1.53)

The sufficient statistics are,

N∑
i=1

log(xi) and, (2.1.54)

N∑
i=1

log(1− xi) (2.1.55)

The reader is asked to estimate α and β using the method of moments in Exercise
??.

2.2 Introduction to the Generalized Method of

Moments4

The examples we have seen so far have the same number of moment equations
and parameters. There is a single solution to the moment equations, and at that
solution, the equations are exactly identified. There are, however, instances where
the number of moment equations exceeds the number of parameters, so the system
is over-identified.

Assume the existence of q ≥ p, moment conditions for p parameters,

E[f(xt, θ0)] = 0 (2.2.1)

4This overview of GMM is based on Hall(2015) [11], Cameron and Trivedi(2005) [5], and
Greene(2008) [9]
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for all t. Where θ0 ∼ p× 1 is a vector of true parameter values, f ∼ q × 1, and xt
is a stationary and ergodic vector of random variables.

The GMM estimator denoted θ̂GMM , is the value of θ that minimizes

QT = gT (θ)′WTgT (θ) (2.2.2)

where gT is the sample moment ,

gT = T−1
∑T

t=1
f(xt, θ) (2.2.3)

and WT ∼ q×q, is a weighting matrix. WT is positive semi-definite, and is assumed
to converge to a positive definite matrix of constants. The GMM estimator is the
estimate of θ that sets the function, QT as close to zero as possible. There is no
exact solution to the moment equations when q > p, GMM locates an approximate
solution.

If p = q then GMM is the method of moments. The key difference between the
two methods is that MoM cannot accommodate q > p.

Distribution Properties of the GMM Estimator

The distribution properties of the GMM estimator require the following assump-
tions:

1. E[f(xt, θ0)] = 0

2. Identification: f(xt, θ
1) = f(xt, θ

2) iff θ1 = θ2

3. The following q × p matrix exists and is finite with rank p:

G(θ0) =
1

T
plim

T∑
t=1

∂ft
∂θ

∣∣∣∣∣
θ0

4. WT converges to a positive definite matrix of constants, W

5. T 1/2
∑T

t=1 ft |θ0
d→ N(0, S0) where, S0 = plimT−1

T∑
t=1

[
ftf
′
t

]∣∣∣
θ0

If these assumptions hold, then the GMM estimator, θ̂GMM , is a consistent estimator
of θ0.

T 1/2
(
θ̂GMM − θ0

) d→ N(0, V ) (2.2.4)

where,

V =
[
G(θ0)′WTG(θ0)

]−1

G(θ0)′WTS(θ0)WTG(θ0)
[
G(θ0)′WTG(θ0)

]−1

(2.2.5)

The choice of WT will determine the size of the variance matrix, V. WT must be a
positive definite matrix. If S(θ0) is known then the most efficient GMM estimator
is found by setting WT = S(θ0)−1. This is an intuitive result since it states that



38 CHAPTER 2. GENERALIZED METHOD OF MOMENTS

the weighting matrix is inversely related to the asymptotic covariance matrix of the
moments.

Setting WT = S(θ0)−1 simplifies the asymptotic variance of θGMM ,

V =
[
G(θ0)′S(θ0)−1G(θ0)

]−1

(2.2.6)

When S(θ0) is unknown, which is usually the case, the most efficient estimator of

θ is found by setting WT = Ŝ−1, where Ŝ is a consistent estimator of S(θ0).

Estimating the GMM model

Hansen proposed a two step procedure for obtaining the optimal GMM estimator.

1. Set WT = 1 and estimate the parameters using the GMM estimator (eq.
2.2.2). The resulting parameters will be consistent.

2. Using the parameter estimates from step 1, calculate ŜT and re-estimate θ
using the GMM estimator where WT = Ŝ−1

T .

An early estimator of ST was,

ŜT = Ω̂0 +
h∑
j=1

(Ω̂j + Ω̂′j) (2.2.7)

where,

Ω̂j = T−1
∑T−j

t=1
ft(vt+j, θ̂T )ft(vt, θ̂T )′ (2.2.8)

As originally proposed by Hansen, estimation consisted of a single pass of these
two steps. In practice, however, it is common to iterate through these two steps
until the change in the vector of parameter estimates, (θ̂K+1 − θ̂K) is negligible.
The iterative procedure is believed to improve the finite sample properties of the
estimator.

First Order Conditions

The first order conditions (FOC) for the minimization of QT are

GT (θ̂T )WTgT (θ̂T ) = 0 (2.2.9)

where,

GT (θ) = T−1
∑T

t=1

∂ft(vt, θ)

∂θ′
(2.2.10)

Generally the FOC are solved using a numerical optimization technique such as
BFGS.6

6BFGS, or the Boyden–Fletcher–Goldfarb–Shannon algorithm is an iterative method for solving
unconstrained nonlinear optimization problems. See Chapter 10 of Cameron and Trivedi [5] for a
discussion on numerical optimization techniques.
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The HAC Estimator

The estimator for ST described in equation 2.2.7 is a consistent estimator, but there
is no guarantee that it will be positive semi-definite. Consequently, V̂ may not be
positive semi-definite, and for a finite sample size the estimated variance of θ̂ may
be negative. 7

Newey and West [24], proposed a heteroskedastic-autocorrelation consistent
(HAC) estimator for ST that will always be positive semi-definite.

ŜHAC = Ω̂0 +
h∑
j=1

ωjm(Ω̂j + Ω̂′j) (2.2.11)

where

ωjm = 1− [j/(m+ 1)] (2.2.12)

ωjm is a kernel weight function, and m is the bandwidth (also called the lag trunca-
tion parameter). The kernel weight function ensures positive semi-definiteness. In
finance applications, where the data consists of time series, it is common to specify
S as a HAC estimator.

The kernel weight can have a number of alternative specifications. Andrews
(1991) [1] describes three common choices for the kernel in the context of HAC
estimators: Truncated, Bartlett, and Parzen. He also considers two additional
kernels, the Tukey-Hanning kernel, and the Quadratic Spectra.8

Truncated: ωTR(x) =

{
1 for |x| ≤ 1,

0 otherwise6|x|3
(2.2.13)

Bartlett: ωBT (x) =

{
1− |x| for |x| ≤ 1,

0 otherwise
(2.2.14)

Parzen: ωPR(x) =


1− 6x2 + 6|x|3 for 0 ≤ |x| ≤ 1/2,

2(1− |x|)3 for 1/2 ≤ |x| ≤ 1,

0 otherwise

(2.2.15)

Tukey - Hanning: ωTH(x) =

{
(1 + cos(πx))/2| for |x| ≤ 1,

0 otherwise
(2.2.16)

Quadratic Spectra : ωQS(x) =
25

12π2x2

[
sin(6πx/5)

6πx/5
− cos(6πx/5)

]
(2.2.17)

Andrews showed that the Quadratic-Spectra kernel is asymptotically optimal in
terms of the mean square error and confidence level performance.9 A Monte Carlo

7Also, iterative techniques used to estimate the optimal GMM estimate of θ̂ when ST is esti-
mated using 2.2.7 may behave poorly.

8Equation 2.2.12 is a Bartlett kernel.
9Andrews considers confidence levels of 99%, 95% and 90%.
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study comparing the five kernels shows that there are only small differences among
the kernels. The Monte Carlo simulation also indicates that the Bartlett kernel
used by Newey and West is somewhat inferior to the other four kernels.

All five kernel types are available choices in the R ’gmm’ package.

Moment Selection

Increasing the number of moments in a GMM model will not reduce asymptotic
efficiency, and generally improves asymptotic efficiency. It does so by reducing the
variance,

V =
[
G(θ0)′S(θ0)−1G(θ0)

]−1

(2.2.18)

The improvement in asymptotic efficiency may, however, come at a cost since in-
creasing the number of moments will likely increase small sample bias and may also
increase the small sample variance of the estimator.

The benefits of adding more moments depends on the application. For maximum
likelihood there is no benefit since it is already fully efficient. Also, if the increase
in moments is accompanied by a corresponding increase in parameters there will be
no increase in efficiency. However, in the case of instrumental variables there can
be considerable benefit.

The J statistic (Hansen, 1982 [14]), or the over-identifying restrictions test (OIR)
is a specification test used for models where there are more moment conditions than
parameters. It is a test of the closeness of the sample moment conditions to zero.
When the model parameters are exactly identified (p = q), the objective function,
QT , is exactly zero. However, when the model parameters are over-identified by the
moment equations (q > p), the moment equations imply substantive restrictions. If
the hypothesis that led to moment equations is incorrect then some of the sample
moment restrictions will be violated. We test the closeness of the sample moment
conditions to zero. The OIR test statistic is,

J = gT (θ̂T )′Ŝ−1
T gT (θ̂T ) (2.2.19)

The J statistic is distributed χ2
q−p. If the model is miss-specified or some of

the moment conditions do not hold, the J statistic will be large relative to a χ2
q−p.

While the J statistic acts as a test for model miss-specification, it does not provide
any information about how the model is miss-specified.

Finite Sample Properties of the GMM Estimator

While the GMM estimator is a consistent estimator, small samples may be biased.
For instance, the inverse of the sample covariance matrix of the moments may be
adversely impact by a single large value. This , in turn, will impact the estimate of
W .

Hansen, Heaton and Yaron (1996) [15] examine the finite sample properties of
three GMM estimators. Given the moment conditions,

E[f(xt, θ0)] = 0 (2.2.20)
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We have seen that an efficient GMM estimator of the parameter vector θ is vector
θ̂ that minimizes the following function,[

T−1

T∑
t=1

f(xt, θ̂)

]′
[Ŝ(θ)]−1

[
T−1

T∑
t=1

f(xt, θ̂)

]
(2.2.21)

where, θ̂ is a consistent estimator of θ, and Ŝ(θ) is the estimated covariance matrix
of the moments.

The first estimator Hansen et. al. consider is the two-step estimator. In this
case, a consistent estimator of θ is found by setting S to the identity matrix (step
1), and estimating equation 2.2.22.[

T−1

T∑
t=1

f(Xt, θ̂)

]′[
T−1

T∑
t=1

f(Xt, θ̂)

]
(2.2.22)

Given the parameters estimates from step one, Ŝ is calculated and equation
2.2.21 is estimated to get the final estimates of θ.

The second estimator is the iterative GMM procedure. This procedure loops
through second step of the two step procedure j times, updating S(θjT ) to S(θjT )
each time it estimates θ. The procedure continues until either j gets very large,
or the change in θjT is very small. Denote this estimator as θ∞T . Note that this
procedure has no asymptotic advantage over the standard two step procedure. The
issue for Hansen, et.al. is whether or not it improves the finite sample properties.
In fact, a Monte Carlo test showed a very slight improvement over the two-step
procedure.

The third estimator is called the continuous updating estimator or CUE. This
procedure simultaneously estimates Ŝ(θ) and θ̂. That is, the weighting matrix is
continuously changed during the minimization process. In this case θTc minimizes,[

T−1

T∑
t=1

f(Xt, θ̂)

]′
[Ŝ(θ)]−1

[
T−1

T∑
t=1

f(Xt, θ̂)

]
(2.2.23)

One advantage that the CUE has over the other two estimators is that it is invariant
to scaling of the moment conditions. The Monte Carlo analysis, however, did
not find that any one estimator was dominant. The CUE was found to have less
median bias then the other two estimators, but the sample distributions of the
CUE estimates had fatter tails. The J test for over identifying retrictions was
found to generally be more reliable for the CUE. The default estimator in the R
’gmm’ package is the two-step method, but the package offers all three estimators
as options.

2.3 GMM and Instrumental Variables11.

Earlier we discussed Wright’s [27] seminal work on instrumental variables (IV) and
the method of moments. Now we will discuss the IV model in the context of the

11This section is based the IV discussion in Chapter 6 of Cameron and Trivedi [5]
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GMM estimator. We begin with the basic linear model:

yi = X ′iθ + ui (2.3.1)

where x′i ∼ 1 × k and E[ui|Xi] = 0. The standard model assumes that ui and Xi

are uncorrelated (exogeneity). If the exogeneity assumption is violated the OLS pa-
rameter estimates will be inconsistent. In the discussion of Wright’s model, we saw
that consistent parameter estimates can be obtained by introducing an instrumental
variable. In IV estimation, an instrument zi, must satisfy two conditions:

1. Exogeneity: E[ui|zi] = 0.

2. Relevance: zi and xi are correlated.

The exogeneity condition implies the population moment condition,

E[zi(yi − x′iθ)] = 0 (2.3.2)

The objective function for the GMM estimator is,

QN =

[
1

N
(y −X ′θ)Z

]
WN

[
1

N
Z ′(y −Xθ)

]
(2.3.3)

where Z ∼ N×r, X ∼ N×k, WN ∼ r×r, and θ ∼ k×1. The first order conditions
are,

∂Qn

∂θ
= −2

[
1

N
X ′Z

]
WN

[
Z ′(y −X ′θ)

]
= 0 (2.3.4)

Solving for θ gives the GMM IV estimator,

θ̂GMMIV = (X ′ZWnZ
′X)−1X ′ZWnZ

′y (2.3.5)

Replacing y with y = Xθ + u, and multiplying by N−1

θ̂GMMIV = θ + ((N−1X ′Z)WN(N−1Z ′X))−1(N−1X ′Z)WN(N−1Z ′u) (2.3.6)

Consistency requires that plim(N−1Z ′u) → 0. The GMM estimator is asymptoti-
cally Normal with mean θ and variance:

V = N [X ′ZWNZ
′X]−1[X ′ZWN ŜWNZ

′X][X ′ZWNZ
′X]−1 (2.3.7)

where

Ŝ = lim
1

N

N∑
i=1

E[u2
i ziz

′
i] (2.3.8)

When the errors are homoskedastic, E[u2
i |zi] = σ2, and S is consistently estimated

using,

Ŝ = s2Z ′Z/N where s2 = (N − k)
N∑
i=1

û2
i (2.3.9)
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and, û = y −X ′θGMMIV .
When heteroskedasticity is present, S is consistently estimated by

Ŝ =
1

N

N∑
i=1

û2
i ziz

′
i = Z ′DZ/N (2.3.10)

where D is a diagonal matrix with entries û2
i .

If the model is exactly identified (p = q), the choice of WN is immaterial since all
choices of WN result in the same estimator. In this instance X’Z is a square invert-
ible matrix so [X ′ZWNZ

′X]−1 = (X ′Z)−1(WN)−1(Z ′X)−1. The GMM estimator
simplifies to the standard IV estimator,

θ̂GMMIV = (X ′Z)−1Z ′y (2.3.11)

V̂ = (Z ′X)−1Ŝ(Z ′X)−1 (2.3.12)

If the model is over identified (q > p), the optimal weighting matrix is WN = Ŝ. If
hetereoskedasticity is present, the GMM estimator is a two step estimator with,

θ̂GMMIV = (X ′ZŜ−1Z ′X)−1X ′ZŜ−1Z ′y (2.3.13)

V̂ = (X ′Z)Ŝ−1(Z ′X) (2.3.14)

If q > p and the residuals are homoskedastic, the optimal weighting matrix is WN =
(Z ′Z)−1. This estimator is the same as the 2SLS estimator and the estimation
process has one step.

θ̂2SLS = (X ′Z(Z ′Z)−1Z ′X)−1(X ′Z(Z ′Z)−1Z ′y) (2.3.15)

V̂ = (X ′Z(Z ′Z)−1Z ′X)−1 (2.3.16)

2.3.1 GMM with Many Moment Conditions

Han and Phillips (2006) [12] examine the asymptotic properties of the GMM es-
timator when the number of moments is allowed to increase with the sample size,
and the moments are allowed to be weak. One situation where this might arise is
in the application of GMM to instrumental variables. That is, there may be weak
instruments.

When the moment conditions are weak the GMM estimator will not be consis-
tent. As Han and Phillips explain, the basic reason for the inconsistency is that
moment condition has a low signal to noise ratio. Given the moment conditions,

E[f(wi, θ0)] = 0 (2.3.17)

where wi are iid and θ0 are the true parameters.
The GMM estimator minimizes g(θ)′g(θ) where

g(θ) = N−1
∑n

i=1
f(wi, θ) (2.3.18)
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g(θ) can be decomposed into its mean, and the variation about the mean,

g(θ) = E[g(θ)] + [g(θ)− E[g(θ)]] (2.3.19)

Any information about θ0 found in the sample of wi comes from E[g(θ)]. The
other part of equation 2.3.19 is noise. When E[g(θ)] is flat and close to zero in a
neighborhood of θ0 the moment condition cannot identify θ0 and is therefore a weak
moment.

In the standard GMM framework E[g(θ)] = 0 for θ0, and as n → ∞ this does
not diminish. The asymptotics for weak moments are different in that the signal
diminishes to zero at a rate

√
n and the noise term also diminishes at the rate

√
n.

The result is that the signal never dominates the noise, and the GMM estimate is
inconsistent.

2.4 Testing the CAPM with GMM14

MacKinlay and Richardson (1991) [22] show that GMM can be used to test a
portfolio of N assets for mean-variance efficiency. Their test is robust in the sense
that GMM can account for heteroskedasticity and autocorrelation in the returns.
In addition, the GMM approach is not constrained by having to assume Normality,
which is the standard assumption one makes when using maximum likelihood,

Let Rt be a vector of N asset returns in excess of the risk free rate at time,t,
and let ft be a vector of K economy-wide risk factors. For instance, in the case of
the standard market model, ft represents returns for the market portfolio, rmt. For
the Fama-French model ft = (rmt, SMLt, HMLt), where SML denotes returns for
portfolio’s defined by firm size (market capitalization), and HML denotes returns
for portfolio’s defined by book value. The mean and variance of the factors, are µ
and Ω. The standard beta representation of the asset pricing model is

E[Rt] = βδ (2.4.1)

where δ is a vector of factor risk premia, and β is a matrix of factor loadings. The
matrix β is defined as,

β ≡ E[Rt(ft − µ)′]Ω−1 (2.4.2)

The factor loadings can also be defined as a time series parameter,

Rt = φ+ βft + εt (2.4.3)

where, E[εt] = 0 and E[ftεt] = 0
Equation 2.4.1 imposes the following restriction on equation 2.4.3,

φ = β(δ − µ) (2.4.4)

14This discussion on testing the CAPM follows the work of Jagannathan, Skoulakis and Wang,
[20]. Also, see Jagannathan, Skoulakis and Wang, [19] for a comprehensive survey of GMM
applications in finance.
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Substituting this into the asset pricing model gives the following three equations.

Rt = β(δ − µ+ ft) (2.4.5)

E[εt] = 0 (2.4.6)

E[ftεt] = 0 (2.4.7)

These three definitions can be used to define the moment conditions:

E[Rt − β(δ − µ+ ft)] = 0 (2.4.8)

E[(Rt − β(δ − µ+ ft)ft)] = 0 (2.4.9)

E[ft − µ] = 0 (2.4.10)

When the economy-wide factor, ft, is the excess return on a traded asset the risk
premium is equal to the mean of the factor (δ = µ) and the sample mean of the factor
can be used to estimate the risk premium. In this case we do not have to include
equation 2.4.10 in the set of estimated moment equations.15 The traded factor
typically used in CAPM studies is the portfolio of all traded stocks. For instance,
the Kenneth French data set defines the market portfolio as all stocks traded on
the NYSE,AMEX and NASDAQ. Alternatively, the Fama-French three factor model
also includes returns from size and book-to-market portfolios as additional traded
assets.

For traded factors the moment conditions can be write as,

E[Rt − βft)] = 0 (2.4.11)

E[(Rt − βft)ft)] = 0 (2.4.12)

In this case, if k = 1 so that the only factor is the market portfolio, there are N
parameters and 2N moment conditions. The J statistic can be applied to test for
over-identification.

Alternatively, when all of the assets are traded we can test the hypothesis that
α = 0 by defining the moment conditions as,

E[f(α, β)] = 02N×1 (2.4.13)

where

f(α, β) =

[
εt

zmtεt

]
=

[
zt − α− βzmt

zmt(zt − α− βzmt)

]
Here we included α in the moment conditions, so we can test the hypothesis that
α = 0. This model has the same number of parameters as moment conditions
so that the sample analogues are exactly satisfied. The result is the least squares
estimator. Since the GMM equation is exactly specified the J test irrelevant. This
is because J = 0 when the system of equations is exactly identified.

Alternatively, MacKinlay and Richardson point out that mean-variance effi-
ciency can be tested by setting α = 0. In this case, there are N parameters and 2N
restrictions. The model is over identified, and the J-statistic can be used to test the
validity of the restrictions.

15If the factor is not a traded asset this restriction does not hold, and the three moments need
to be estimated. An example of a non-traded factor is inflation.
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Example 2.4. In this example we test the hypothesis that α = 0 for a set of 8
”new media” firms. These are non-traditional media firms that have entered the
media industry in the past 10 years, and have effectively changed the nature of
the industry.16 Summary statistics of the daily returns for each firm, along with
the market portfolio are shown in Table 2.1. The sample of daily returns covers
the period from November 7 2013 to June 16, 2017. Netflix has the highest average
daily return in the sample, and Twitter the lowest. Twitter has the highest standard
deviation, and Alphabet has the lowest. The market portfolio, Apple, and Twitter
have a negative skew. The excess kurtosis is positive for all firms, and also the
market portfolio.

Company Ticker Mean Std. Dev. Skew Ex. Kurt
Apple AAPL 0.07 1.54 -0.48 6.49
Amazon AMZN 0.13 1.86 0.47 10.32
Facebook FB 0.17 2.10 2.97 38.08
Alphabet GOOG 0.09 1.43 2.15 22.54
Microsoft MSFT 0.09 1.45 0.02 10.71
Netflix NFLX 0.26 3.10 3.14 38.51
Twitter TWTR -0.04 3.49 -0.55 9.17
Yahoo YHOO 0.10 1.85 0.07 3.03

Mkt 0.06 0.80 -0.39 2.17

Table 2.1: Summary Statistic for New Media Company, Daily Returns (%)

Output from the gmm command in the ’gmm’ package in R is shown in Table 2.2.
This example used the default options, which include the optimal 2 step estimation
procedure, and the quadratic spectral kernel. By default the command also displays
the J-test, which in this case is zero since the model is exactly identified. The results
for

Results from the hypothesis test H0 : α = 0 are shown in Table 2.3. We are
unable to reject the null hypothesis that the intercepts are jointly equal to zero.

16Some prominent ”old media” firms include CBS, FOX, Disney, and Sony.
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gmm(g = z zm, x = h)
Method:twoStep
Kernel:Quadratic Spectral

Coefficients:
Estimate Coefficient Std. Error t value Pr(> |t|)
MSFT (Intercept) 0.0267 0.0363 0.7359 0.4618
FB (Intercept) 0.0873 0.0521 1.6768 0.0936
TWTR (Intercept) -0.0978 0.1083 -0.9036 0.3662
AAPL (Intercept) 0.0380 0.0421 0.9018 0.3672
YHOO (Intercept) 0.0150 0.0467 0.3213 0.7480
AMZN (Intercept) 0.0796 0.0569 1.3987 0.1619
NFLX (Intercept) 0.1066 0.0863 1.2356 0.2166
GOOG (Intercept) 0.0294 0.0393 0.7487 0.4541
MSFT zm 1.1091 0.0489 22.6630 0.0000
FB zm 1.2080 0.0677 17.8450 0.0000
TWTR zm 1.0897 0.1294 8.4228 0.0000
AAPL zm 0.9786 0.0519 18.8650 0.0000
YHOO zm 1.2136 0.0669 18.1300 0.0000
AMZN zm 1.1690 0.0841 13.9030 0.0000
NFLX zm 1.2863 0.1210 10.6300 0.0000
GOOG zm 1.0495 0.0513 20.4580 0.0000

J-Test: df = 0
J-test P-value
Test E(g)=0: 2.600222 7e-26 *******

Table 2.2: GMM Estimates of CAPM - New Media Firms

Linear hypothesis test

Hypothesis:
MSFT ((Intercept) = 0
FB ((Intercept) = 0
TWTR ((Intercept) = 0
AAPL ((Intercept) = 0
YHOO ((Intercept) = 0
AMZN ((Intercept) = 0
NFLX ((Intercept) = 0
GOOG ((Intercept) = 0

Model 1: restricted model
Model 2: z zm

Res.Df Df Chisq Pr(¿Chisq)
1 913
2 905 8 7.9166 0.4417

Table 2.3: Hypothesis Test - New Media Firms
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2.5 GMM Estimation of a Stochastic Volatility

Model

GMM has been used by a number of researchers to estimate the stochastic volatility
model.19 The log Normal stochastic volatility model is specified as,

rt = σtεt (2.5.1)

ln(σ2
t ) = ω + βln(σ2

t−1) + σuut (2.5.2)

where rt is the return on an asset, εt and ut are independent of each other, and each
is standard Normal. When 0 < β < 1 and σu ≥ 0, rt is stationary and ergodic,
and the unconditional moments of any order exist. The parameters in this model
are θ = (ω, β, σu) where ω is the level of log-variance, β is the persistence of log-
variance, and σu is the volatility of log-variance. Note that the only observable
in this specification is the time series of returns, rt. In addition, note the time
subscript on the volatility indicating that this is a model of time varying volatility.

This model captures an important characteristic of asset returns, in that rt is
uncorrelated but dependent over time. The dependence is captured by the autore-
gressive specification of ln(σ2

t ).
Andersen and Sorensen[3] use Monte Carlo analysis to evaluate the finite sample

properties of the GMM parameter estimates for the stochastic volatility model.
They select a set of lower order moment conditions in order to capture the fat
tails that characterize the distribution of returns. The moments were originally
proposed by Jacquirer, Polson and Rossi (JPR) [21]. 20 Andersen and Sorensen ran
simulations for various subsets of the following moments:21

E|rt| = (2/π)1/2E(σt) (2.5.3)

E(r2
t ) = E(σ2

t ) (2.5.4)

E(r3
t ) = 2

√
(2/π)E(σ3

t ) (2.5.5)

E(r4
t ) = 3E(σ4

t ) (2.5.6)

E|rtrt−j| = (2/π)E(σtσt−j) for j = 1 . . . 10 (2.5.7)

E[r2
t r

2
t−j] = E(σ2

t σ
2
t−j) for j = 1 . . . 10 (2.5.8)

where for any positive integer j, and any positive constants r and s:

E(σrt ) = exp(rµ/2 + rσ2/8) (2.5.9)

E(σrtσ
s
t ) = E(σrt )E(σst )exp(rsβ

jσ2/4) (2.5.10)

where µ = ω/(1−β) and σ2 = σ2
u/(1−β2) are the unconditional mean and variance

of equation 2.5.2.

19See Andersen and Sorensen, 1996 [3] for a discussion of the different approaches that have
been used to estimate the stochastic volatility model.

20Andersen and Sorensen use the specification of JPR as a benchmark. JPR showed that the
GMM estimators of the log Normal stochastic volatility model have poor finite sample properties
compared with the Bayesian estimator.

21See JPR for the first derivatives of the moments.
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Figure 2.1: Simulated data for Monte Carlo

Example 2.5. In this example we compare the results of a Monte Carlo analysis
using the same 3 and 5 moments conditions from Andersen and Sorensen. We
simulate a series of T=1000 observations using the following parameter vector,
θ = (ω, β, σu) = (−0.736, 0.9, 0.363), and estimate the model using the GMM two-
step procedure with a quadratic spectral kernel. This procedure is repeated 1000
times. The simulated series for log returns and log volatility are shown in Figure
2.1. Following AS [3] the exactly identified model uses moments, M1, (eq:2.5.3),
M2,(eq:2.5.4), and M5,(eq:2.5.7). The discrepancy functions for the 3 moment
conditions are:

g1 = (1/T )
∑
|yt| − (2/π)1/2exp(µ/2 + σ2/8) (2.5.11)

g2 = (1/T )
∑

y2
t − exp(µ+ σ2/4) (2.5.12)

g5 = (1/T )
∑
|ytyt−1| − (2/π)exp(µ+ σ2/4)(1 + β1) (2.5.13)

In addition to the g1 and g2, the 5 moment specification also includes the following
discrepancy functions:

g4 = (1/T )
∑

y4
t − 3 ∗ exp(2µ+ 2σ2) (2.5.14)

g6 = 1/T )
∑
|ytyt−2| − (2/π) ∗ exp(2(µ/2 + σ2/8) + (σ2/4) ∗ β2) (2.5.15)

g15 = (1/T )
∑

(y2
t y

2
t−1)− exp(2(µ/2 + 4 ∗ σ2/8) + βσ2)) (2.5.16)

The procedure used to derive the estimate was as follows:

1. Simulate a sample of 1,000 observations using the parameters θ = (ω, β, σu) =
(−0.736, 0.9, 0.363)

2. Set the initial value of ω to zero, and initialize β and σu with random draws
from a uniform distribution with a range of 0 < x < 1.
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3. Estimate the model for a set of moments, which for this example is either 3
or 5.

4. Repeat steps 1 - 3, N times. In this example, N=1,000, 5,000, and 10,000
times.

The model specification places two constraints on the parameter space, 0 < β < 1,
and σu > 0. In this example, if the parameter estimates were outside these bounds
they were discarded. Also, if the covariance matrix was singular the results were
discarded. The results of the Monte Carlo simulation, showing average parameter
estimates, and the root mean squared error (RMSE) of the parameter estimate,
are reported in Table 2.4.22 The RMSE is generally smaller for the 5 moment
specification. The two specifications differ the most in the estimation of σ̂u, with
the RMSE for the 3 moment model almost 4 times larger than that of the 5 moment
model. Surprisingly the RMSE does not change much as T increases for either
specification. AS found a substantial decrease in the RMSE at T increased. They
also encountered a large number of iterations where the model did not converge.
They determined that this happened most often when β̂ approached one, so they
set a maximum value of 0.9999 to reduce the number of non-convergences.

# of Moments 3 5

T=1000
ω̂ -0.4661 (0.5597) -0.4130 (0.3700)

β̂ 0.5628 (0.4162) 0.5545 (0.4055)
σ̂u 0.7438 (0.7372) 0.3135 (0.2006)

T=5000
ω̂ -0.4812 (0.5618) -0.3952 (0.3836)

β̂ 0.5605 (0.4163) 0.5713 (0.3901)
σ̂u 0.7809 (0.7585) 0.3046 (0.1998)

T=10000
ω̂ -0.4943 (0.5845) -0.3978 (0.3816)

β̂ 0.5636 (0.4132) 0.5697 (0.3912)
σ̂u 0.7922 (0.7779) 0.3066 (0.2000)

Table 2.4: Monte Carlo Simulation, Average Parameter Estimate, Root Mean
square Error in Parentheses

22The code used to estimate the parameters is provided at the end of the chapter.



2.6. EXERCISES 51

2.6 Exercises

1. Show that the maximum likelihood estimates for mean and variance of the
Normal distribution are the same as the method of moment estimates.

2. Show the the OLS estimate of α in equation 2.1.24 is an inconsistent estimator.

3. Let {x1, x2, ..., xn} denote a random sample from a beta distribution The
population mean and variance for the beta distribution are,

E[xi] =
α

α + β
(2.6.1)

and,

V ar[xi] =
(α)(β)

(α+β)2(α + β + 1)
(2.6.2)

Estimate α and β using the method of moments.
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2.7 R Code for Examples

2.7.1 Example 2.4

library(gmm)

z <- as.matrix(newmediafirms[,3:10])

zm <- as.matrix(newmediafirms[,2])

t <- nrow(zm)

h <- matrix(zm,t ,1)

res <- gmm(z ~ zm, x = h)

summary(res)

library(car)

linearHypothesis(res,cbind(diag(8),matrix(0,8,8)),rep(0,8))

2.7.2 Example 2.5

Three moments:

library(stochvol)

sim <- svsim(1001, mu = -0.736, phi = 0.9, sigma = 0.363)

x1<-Lag(sim$y, 1)

x<-cbind(sim$y,x1)

x<-na.omit(x)

par(mfrow = c(2, 1))

plot(sim)

library(gmm)

#Define Moment Function

g1 <- function(theta, x) {

mu<-theta[1]/(1-theta[2])

sigmasq<-theta[3]^2/(1-theta[2]^2)

moments<-c(

m1 <- sqrt(2/pi)*exp(mu/2 + sigmasq/8),

m2 <- exp(mu + sigmasq/2),

m5 <- (2/pi)*exp(2*(mu/2 + sigmasq/8) + theta[2]*sigmasq/4)

)

obsdata <- data.frame(cbind(abs(x[,1]),x[,1]^2,abs(x[,1]*x[,2]) ))

f<-obsdata - t(moments)

return(f)

}

theta<-matrix(data=NA,nrow=3,ncol=1)

outparm<-matrix(NA,nrow=10000,ncol=5)

#Simulate T times

for(i in 1:10000){

sim <- svsim(1001, mu = -0.736, phi = 0.9, sigma = 0.363)

theta[1]<- 0
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theta[2]<- runif(1)

theta[3]<- runif(1)

x2<-Lag(sim$y, 1)

x1<-cbind(sim$y,x2)

x<-na.omit(x1)

res1 <- gmm(g1,x=as.matrix(x),t0=theta)

dum<-ifelse(0.0001>res1$coefficients[2] || res1$coefficients[2]>0.9999,0,1)

outparm[i,1:3]<-res1$coefficients

outparm[i,4]<-dum

outparm[i,5]<-res1$vcov[1,1]

print(i)

}

#Apply parameter constraints and remove NA’s

outparm<-outparm[outparm[,3]>0,,drop=FALSE]

outparm<-outparm[outparm[,2]>0.0001,,drop=FALSE]

outparm<-outparm[outparm[,2]<0.9999,,drop=FALSE]

outparm<-outparm[!is.na(outparm[,1]),]

outparm<-outparm[!is.na(outparm[,1]),]

outparm<-outparm[!is.infinite(outparm[,5]),]

mean(outparm[,1])

mean(outparm[,2])

mean(outparm[,3])

#RMSE

parm1<-sqrt(mean((outparm[,1]-(-0.736))^2))

parm2<-sqrt(mean((outparm[,2]-(0.9))^2))

parm3<-sqrt(mean((outparm[,3]-(0.363))^2))

#Plot

plot(density(outparm[,1]),main="Omega")

plot(density(outparm[,2]),main="Beta")

plot(density(outparm[,2]),main="Sigma_eta")

5 moments:

g1 <- function(theta, x) {

mu<-theta[1]/(1-theta[2])

sigmasq<-theta[3]^2/(1-theta[2]^2)

moments<-c(

m1 <- sqrt(2/pi)*exp(mu/2 + sigmasq/8),

m2 <- exp(mu + sigmasq/2),

m4 <- 3*exp(2*mu + 2*sigmasq),
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m6 <- (2/pi)*exp(2*(mu/2 + sigmasq/8) + (sigmasq/4)*theta[2]^2),

m15 <- exp(2*(mu/2+ 4*sigmasq/8) + theta[2] * sigmasq) )

obsdata <- data.frame(cbind(abs(x[,1]),x[,1]^2,x[,1]^4,abs(x[,1]*x[,3]),x[,1]^2*x[,2]^2))

f<-obsdata - t(moments)

return(f)

}
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Chapter 3

Fractional Differencing and Long
Memory Models

3.1 Introduction

In this lecture we generalize the ARIMA model to allow for long memory. The
autocorrelation of a time series with long memory is more persistent than that of
a standard stationary ARMA process. In Chapter 1 we saw that the ACF for a
stationary series decreases exponentially as lag length, k, increases. There are, how-
ever, stationary time series that have an ACF that declines at a slower rate, and
clearly cannot be considered I(0). These series are characterized as long memory.
Heuristically we can define a time series as having a long memory if the autocor-
relation function of the series decreases hyperbolically, rather than exponentially.
As we will see, stationary long memory models are neither I(1) nor I(0). Instead,
they are I(d) where |d| < 0.5

Consider the following ARIMA model,

∆dxt = (1−B)dxt = et (3.1.1)

where B is a lag operator,d is the degree of integration, and et is a white noise
process with E(et) = 0, E(e2

t ) = σ2, and E(σs, σt) 6= 0 for s 6= t. The series xt said
to be integrated of order d, or xt I(d).
If d = 1 then,

xt = xt−1 + et (3.1.2)

and the series xt is a random walk.
If d = 0 then,

xt = et (3.1.3)

and the series xt is a white noise stationary process.

The autocorrelation function (ACF) for the random walk series is shown in
Figure 3.1. It decreases very slowly with k in this example. Note, however, that

59
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the covariance is not fixed for |t− s| as it is for a stationary series.1

Figure 3.1: Random Walk Series and Autocorrelation Function

Figure 3.2 shows the first difference of the random walk series, along with the
ACF. This series is a white noise process, and the ACF is never significantly different
from zero.

Figure 3.2: White Noise Series and Autocorrelation Function

First differencing the random walk series results in a series that is stationary.
This, of course, is a standard approach for transforming a nonstationary time series

1In Chapter 1, the derivation of the ACF assumed that the time series was stationary. The
autocorrelation function for a random walk is 1√

(1+k/t)
, where k = lag and t = time. For small

values of k relative to t, the autocorrelation will be close to one.
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into a stationary series. We transform the data from an I(1) process, to an I(0)
process. If a process is fractional d, however, first differencing may not be an
inappropriate transformation of the series.

Standard unit root tests have been shown to have less power against a fractional
d process (see, for instance, Diebold and Rudebusch [6]). As a result, if a process is
fractional d, d=1 will be chosen more often then the correct d < 1 using a standard
such as the Dickey-Fuller test.

3.2 Long Memory Models

3.2.1 Defining Long Memory

There are several definitions of a long memory model. Definitions 1, 2, and 3 below
are discussed in Granger, 2004.[12]2

Definition 1: When d>0 the autocovariance follows a power law:

γk ≡ ckk
2d−1 as k→∞ (3.2.1)

where γ is the autocovariance, ck is a slowly varying function at infinity, and d is
the order of integration.

In this case, the autocorrelation function (ACF) is proportional to a power law,

ρk ∝ k2d−1 as k→∞ (3.2.2)

The autocorrelation function decays hyperbolically when 0 >d <1, as opposed to
the exponential decay of the ACF of a stationary process.3 Figure 3.3 illustrates
this by comparing the ACF for a series with d=0.44 to a stationary AR(1) series.5

Definition 2: A time series xt has long memory if the following measure is
non-finite:

lim
T→∞

T∑
k=−T

|ρk| (3.2.3)

where ρk is the autocorrelation with lag k. In this case, the autocorrelations decay
so slowly that they are not summable. An equivalent way of stating this is that for
a long memory process the spectral density f(ω) is unbounded at low frequencies.
6 This leads to the third definition.

2Also, See Samorodnitsky, 2006, [20] for an indepth discussion on long range dependence and
the various definitions.

3Note when d = 0 the series is said to have short memory.
4∆0.4xt = et, et ∼ iid(0, σ2)
5xt = 0.9 ∗ xt−1 + et, et ∼ iid(0, σ2). The ACF for the series is 0.9k, where k = lag.
6This is in contrast to a stationary and invertible ARMA process which has autocorrelations

that are bounded at low frequencies, and has short memory. That is, |ρk| ≤ cm−k for large k,
where 0 < m < 1. see [3]
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Figure 3.3: ACF for process with d=0.4 vs. d=0

Definition 3: As the frequency of a time series approaches zero, the spectral
density approaches infinity.

fx(ω) =∞ as ω → 0+ (3.2.4)

where ω is the frequency. Figure 3.4 shows the spectral densities of a standard white
noise series (d = 0)7 along with that of a fractionally integrated white noise series
with d = 0.4.8 The spectral density for the standard white noise process has no
discernible pattern across frequencies. The fractionally integrated series (d = 0.4),
shows a clear upward trend in the spectrum as the frequency decreases. It indicates
that there is a long cycle (memory) in the series.

Definition 4: Alternatively, the memory of a process can be defined by the rate
of growth in the variance of partial sums of the process.(see Inoue and Diebold, 1991
[6]). Define the partial sum ST as,

ST =
T∑
t=1

xt (3.2.5)

The memory of xt is defined as,

var(ST ) = O(T 2d+1) (3.2.6)

where d is the order of integration. The variance of partial sums for a short memory
process increases proportional to the number of terms in the sum. In the case of
the long memory process the variance of partial sums grows much faster. This
definition of long memory is closely related to the rescaled range developed by
Hurst and discussed in Application ??.

7∆1xt = et ,et iid(0, σ2)
8The ACF of the fractionally integrated series is shown in Figure 3.3.
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Figure 3.4: Spectral density, d=0 vs. d=0.4

3.2.2 Defining the ARIMA(0,d,0) Model

The fractional difference operator, d, is defined by a binomial expansion of ∆d:

∆d = (1−B)d =
∞∑
k=0

(
n

k

)
−Bk

= 1− dB − 1

2
d(1− d)B2 − 1

6
d(1− d)(2− d)B3 − ... (3.2.7)

Note that this is an infinite sum. In cases where d is an integer the expansion is
finite.9

Define the ARIMA(0,d,0) as ∆d = et. Let xt be an ARIMA(0,d,0) stochastic
process. Hosking (1981) shows that the following hold:

1. When d <1/2, xt is a stationary process and has an infinite order moving
average representation.

xt = ψ(B)αt =
∞∑
k=0

ψkαt−k (3.2.8)

where ψk = (k+d−1)!
k!(d−1)!

, as k →∞, ψk ∼ kd−1

(d−1)!

9The Binomial Theorem states that:

(x+ y)n =
∑n

k=0

(
n
k

)
xkyn−k, where

(
n
k

)
= n!

k!(n−k)!

Applying the theorem to polynomials of the lag operator (1−L)d where d is a positive integer we
see that the coefficients will be zero for k >d, so the series is truncated at order d.
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2. When d >-1/2, xt is invertible and has an infinite order autoregressive repre-
sentation.

π(B)xt =
∞∑
k=0

πkxt−k = αt (3.2.9)

where πk = (k−d−1)!
k!(−d−1)!

, as k →∞, πk ∼ k−d−1

(−d−1)!

3. The spectral density of xt is

s(ω) = 2sin(−1

2
ω)−2dfor0 < ω ≤ π (3.2.10)

as ω → 0, s(ω) ∼ ω−2d

4. The autocorrelation of xt is

ρk ∼
(−d)!

(d− 1)!
k−1−2d (3.2.11)

5. The partial correlation of xt is

φkk =
d

k − d
(3.2.12)

6. The partial linear regression coefficients are:

φkj = −
(
n

k

)
(j − d− 1)!(k − d− j)!

(−d− 1)!(k − d)!
(3.2.13)

7. For 1� j � k as j, k,→∞ and j/k → 0

φjk ∼ −j−d−1/(−d− 1)! (3.2.14)

Based on the work of Hosking [14] and Granger and Joyeaux [11] , we know the
following about d for the ARIMA(0,d,0) process:

• When −1/2 > d < 1/2, the ARIMA(0,d,0) process is invertible and station-
ary, and the autocorrelation function decays hyperbolically. The parameters
πk and ψk both decay hyperbolically, as opposed to exponentially as is the case
for an AR(p,0,q) process. An ARIMA(0,d,0) process that is nonstationary can
be differenced until |d| < 1/2. Then it will be stationary and invertible.

• When 0 < d < 1/2 the ARIMA(0,d,0) process has long memory. The au-
tocorrelations are all positive and decay monotonically and hyperbolically to
zero as the lags increase. In this case the spectral density is concentrated at
low frequencies, and s(ω) is a decreasing function of ω. s(ω) → 0 as ω → 0
but s(ω) is integrable.
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• When d=0 the ARIMA(0,d,0) is white noise and the spectral density is con-
stant.

• When −1/2 < d < 0 the ARIMA(0,d,0) process exhibits anti-persistence.
The sum of the absolute values of ρk tend to be finite, so the series has short
memory based on Definition 2. The correlations are negative but they decay
monotonically and hyperbolically to zero as the lags increase. s(ω) is an
increasing function of ω so that the spectral density is dominated by high
frequency components.

• When d = 1/2, the process will be nonstationary and invertible. The spectral
density is s(ω) = 1/(1/2sin(2ω)) ∼ ω−1 as ω → 0 In this case the process is
said to be ’1/f noise’.

• When d = -1/2 the process will be stationary but not invertible.10

• When 1/2 < d < 1 the process is mean reverting and nonstationary. In a
sense this range provides a continuum from a purely nonstationary process
where d=1, to a purely stationary process where |d| < 1/2.

3.2.3 ARFIMA

The ARFIMA(p,d,q) model (see [11], and [14]) is a generalized ARIMA(p,d,q)
process that allows for fractional d. This model combines the ARIMA(0,d,0) model
with the ARIMA(p,d,q) of Box and Jenkins while allowing d to be a real number.
Let yt be an ARFIMA(p,d,q) process,

Φ(B)(1−B)d(xt − µ) = Θ(B)et (3.2.15)

where d is the fractional differencing parameter. Then,

1. xt is stationary if d < 1/2 and all of the roots of the equation Φ(B) = 0 lie
outside the unit circle.

2. xt is invertible if d > −1/2 and all of the roots of the equation Θ(B) = 0 lie
outside the unit circle.

If xt is stationary and invertible with spectral density s(ω) and correlation
function ρk. Then,

3. limω2ds(ω) exists as ω → 0 and is finite.

4. lim k(1−2d)ρk exists as k →∞ and is finite.

10Since the series is not invertible, a forecast of the process cannot be expressed as a convergent
sum of past values of the process.
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3.3 Estimation

There are a number of methods available for estimating d. In this section we discuss
two of the more common approaches. First, we examine the Geweke, Porter-Hudak
method of estimating d alone. Then, we consider the quasi-maximum likelihood
approach which estimates the complete ARFIMA model. 11

Estimating d with GPH

The GPH method exploits the fact that a random variable of the form

(1−B)d(xt − µ) = et (3.3.1)

can be written in frequency domain as

fx(ω) = |1− e−iω|−2dfe(ω) (3.3.2)

where et is a stationary and invertible process, and fx(ω) and fe(ω) are the spectral
densities of xt and et, respectively. This expression can be rewritten as

ln(fx(ω)) = (4sin2ω

2
)−d + ln(fe(ω)) (3.3.3)

ln(fx(ωi)) = ln(fe(0))− d ∗ ln((4sin2ωi
2

)) + ln(fe(ωi)/fe(0)) (3.3.4)

The GPH method is a regression based on equation 3.3.4 using the spectral ordinates
ωi from the periodogram of xt, I(f(ωi)) to find d. For i = 1, 2, ...M , where M � T
the regression is defined as:

lnI(ωi) = β0 + β1ln(4sin2(
ωi
2

)) + η (3.3.5)

where d = −β1. An estimate of d allows one to filter the time series to make it
stationary. Once we have a stationary series we can estimate an ARMA(p,q) model.

Statistical properties of the GPH d estimator

GPH show that

(d̂− d)/

√
var(d̂)

d−→ N(0, 1) (3.3.6)

where var(d̂) is from the regression.
The choice of M is important since d̂ will be biased if M is too large. M is

typically chosen as a function of the sample size, T . A common rule is to set
M = Tα for α ∈ [0.5, 0.8].12

Example 3.1.

11In the application at the end of this chapter (section 3.5.1) we describe a third approach for
estimating, d, called the rescale-range method.

12See Agiakloglou,1992 [1] for a detailed discussion on bias in the estimator of d.
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Figure 3.5 shows the average monthly yield on 3 month T-Bills for January 1934
through May 2018. The yield in January 1934 was 0.7%. It peaked in May 1981
at 16.3%, and as of May 2018 the rate was 1.9%. The Augmented Dickey -Fuller
test with a maximum of 14 lags fails to reject the null hypothesis that the series is
nonstationary, and suggests that first differencing is required to make it stationary.
Figure 3.6 show the ACF for the yield. The autocorrelations drop off slowly sug-
gesting that d is less than 1. The periodogram13 for the series is shown in Figure
3.7. The spectrum is highest at low frequencies indicating the presence of long
memory.

Figure 3.5: Yield on 3 month T-Bills, January 1934-May 2018

Figure 3.6: ACF of 3 month T-Bill Yield

13The periodogram was smoothed using a Daniell kernel with m=14. The Daniell kernel is a
centered moving average whose width is 2m+1.
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Figure 3.7: Periodogram of 3 month T-Bill Yield

The ”fracdiff” library in R has a command, fdGPH, which estimates d using the
GPH method.14 The GPH regression is shown in 3.3.7.

lnI(ωi) = β0 − d ∗ ln(4sin2(
ωi
2

)) + η (3.3.7)

The left hand side variable is an (Mx1) vector containing the elements of the peri-
odogram. 15 The expression for the periodogram is,

lnI(ωi) = γ̂(0) + 2
n−1∑
k=1

γ̂(k)cos(ωi(k)) (3.3.8)

where γ̂(0) is the sample variance of xt, γ̂i(k) is the sample autocorrelation for lag
k, ωi = (2πi)/T , and T = number of observations in the univariate time series xt,
and i = 1, ...,M,M < T .

Applying the fdGPH command to the 3 month yield on T-Bills results in an
estimate of d = 0.85 with a standard deviation of 0.12. The series is a mean
reverting nonstationary series. Applying the difference filter (1−B)d to the original
series where d = 0.85 results in the series shown in Figure 3.8. The ACF for this
series is shown in Figure 3.9. The autocorrelation drops off to zero after 6 lags
indicating that the series is stationary.

Applying the fdGPH command to the fractionally differenced series finds d =
−0.045 with a standard deviation of 0.12. The differenced series exhibits a small
level of anti-persistence but it is stationary. Note that this time series covers a long
period of time with a number of economic and political events which could have
caused structural breaks. We will revisit the series later in the chapter when we
discuss the impact of structural breaks on long memory. The periodogram for the
fractionally differenced series is shown in Figure 3.10.

14https://CRAN.R-project.org/package=fracdiff
15Recall that the periodogram is the sample analog of the spectral density.
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Figure 3.8: Fractionally differenced 3 month T-Bill Yield, d=0.85

Figure 3.9: ACF for 3 month T-Bill Yield

Figure 3.10: Periodogram of fractionally differenced 3 month T-Bill Yield
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Exact Likelihood Estimation of an ARFIMA(p,d,q) Model

If d is estimated with the GPH spectral density regression, then estimating the
ARFIMA(p,d,q) is a multi-step process. This is often referred to as a semi-parametric
approach. First d is estimated, then the series is filtered, and lastly the ARMA(p,q)
is estimated. Filtering involves using the estimate of d to find ut:

ut = (1−B)dxt (3.3.9)

As Sowell points out, (1− B)d is an infinite polynomial, so ut can only be defined
when there is an infinite realization of xt. One solution is to use the Binomial
Theorem and the estimate of d to create a series, ut that is truncated at the sample
size of yt.

16

An alternative approach for estimating the ARFIMA, first detailed by Sowell
[21], is to estimate all of the parameters simultaneously using maximum likelihood.
This is typically referred to as the parametric approach. Assume that yt is a station-
ary fractionally integrated time series with the properties of the ARFIMA(p,d,q)
model outlined above. Therefore 0 ≤ d < 0.5.

Φ(B)(1−B)d(xt − µ) = Θ(B)et (3.3.10)

Let Y X be a sample of T observations, where X ∼ N(0,Σ), X is a Tx1 vector and
Σ is a TxT matrix. The density of X is:

f(X) = (2π)−T/2|Σ|1/2exp(0.5X′Σ−1/2X) (3.3.11)

Calculating the solution to this equation requires the inverse of the variance-covariance
matrix, Σ. For moderate size matrices this can be done using the Cholesky decom-
position. When the data set is large, Cholesky is not an efficient method. An
alternative method is the Levinson-Durbin algorithm which takes advantage of the
fact that the variance-covariance matrix is in Toeplitz form:17

Σ = [γ(i− j)], i, j = 1, 2, ..., T (3.3.12)

An important step in implementing either the Cholesky or Levinson-Durbin
procedure is estimating the autocovariances, which must be specified in terms of
the parameters of the model. Sowell presents a closed form solution which involves
transforming xt to a spectral density, and deriving the autocovariances using:

γ(s) =
1

2π

∫ 2π

0

fy(ω)e−iωsds (3.3.13)

The spectral density of xt is derived in two steps. First the spectral density of
ut = (1 − B)dxt is calculated. This is the spectral density for an ARMA(p,q).

16An equivalent approach proposed by GPH uses the Fourier transform. See Sowell [21] for
details.

17The Toeplitz matrix has constants on each of the diagonals.
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Then, the spectral density of xt is calculated. This is the spectral density of an
ARIMA(p,d,q) model. The autocovariance functions is written as:

γ(s) = σ2

q∑
l=−q

p∑
j−1

ψ(l)ζjC(d, p+ l − s, ρj) (3.3.14)

where
C(d, h, ρ) = 1

2π

∫ 2π

0
[ ρ2p

(1−ρe−iω)
+ 1

(1−ρ−1e−iω)
](1− e−iω)−d(1− eiω)−de−iωhdω

ζj = ρi
∏p

i=1[(1− ρiρj)
∏

m 6=j(ρj − ρm)]−1

Ψ(l) =
min(q,q−l)∑
s=max(0,l)

θsθs−l

The steps involved in the derivation help provide the intuition behind these
equations. First, ut is written in terms of the Wold decomposition:

ut =
Θ(B)

Φ(B)
(1−B)−det (3.3.15)

The roots of Φ(B) are assumed to lie outside the unit circle so we can write:

Φ(x) =

p∏
j=1

(1− ρjx) (3.3.16)

where, |ρj| < 1
The spectral density for the stationary ARMA(p,q) process is defined as follows:

fu(ω) = σ2

q∑
l=−q

ψ(l)ηl
p∑
j−1

ηpζj

[
ρ2p
j

(1− ρjη)
− 1

(1− ρ−1
j η)

]
(3.3.17)

where η = e−iω.
The spectral density of xt is:

fx(ω) = (1− η)d(1− η−1)−dfu(ω) (3.3.18)

If p=0, so that the model is ARIMA(0,d,q), the spectral density simplifies quite a
bit. First, C(d, h, ρ) simplifies because the term inside the braces is one. Also, the
j indexed sum and the ζj do not have to be calculated.

Estimation of the log-likelihood involves the following steps:

1. Calculate the autoregressive polynomial.

2. Calculate the ζ ′s

3. Calculate the different C(d,h, ρ) values. Note that d is restricted to real values
less than 1/2, h can be any integer, and ρ can be any complex number in the
unit circle.

4. Evaluate the covariance matrix.

5. Calculate the determinant of the inverse of the covariance matrix.

6. Evaluate the log likelihood function.

Sowell also presents an alternative approach for estimating C which is more efficient.
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An Autoregressive Approximation of the ARIMA(p,d,q) Model

Since the exact maximum likelihood method is computationally intensive, several
authors have suggested an autoregressive approximation. An approximation by
Haslett and Rafferty [13] is available in the ’fracdiff’ package.

Given the ARFIMA process for a series xt

Φ(B)(1−B)dxt = Θ(B)et (3.3.19)

The one step ahead forecast can be approximated as,

x̂t = Θ(B)Φ(B)−1

t−1∑
j=1

φtjxt−j (3.3.20)

The variance of the forecast error of yt is:

vt = var(xt − x̂t) = σ2
yκ

t−1∏
j=1

(1− φ2
jj) (3.3.21)

where σ2
y is the var(xt), κ is the ratio of innovations variance to the variance of the

ARMA(p,q) process defined by Θ(B) and Φ(B), and φtj are the partial regression
coefficients defined by Hoskings (see Item 6). To eliminate the need to calculate a
large number of φij the following approximation is used:

t−1∑
j=1

φtjxt−j ≈
m∑
j=1

φtjxt−j −
t−1∑

j=M+1

πtjxt−j (3.3.22)

where π is the π(B) used by Hoskings (see item 2). Note that −π is used as an
approximation of φ for large j. This is based on the work of Hoskings, and can be
seen by comparing the results in item 2 with those of item 7 in the discussion of the
ARIMA(0,d,0) model. Haslett and Rafferty make one additional simplification by
assuming that the πj terms are constant for j ≥M + 1, and replace the individual
terms with an average to get the following expression:

t−1∑
j=M+1

πtjxt−j ≈MπMd
−1[1− (

M

t
)d]x̄M+1,t−1−M) (3.3.23)

where, x̄M+1,t−1−M = 1
t−1−2M

t−1−M∑
j=M+1

xj

The quasi-maximum likelihood function is:

lnL = constant− 1

2
nlog[σ̂2

e(θ)] (3.3.24)

where, σ̂2
e(θ) = 1

n

n∑
t=1

(xt−x̂t)2
vt

Example 3.2.
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In this example we simulate a stationary series with d = 0.42, θ = 0.5, and, φ =
−0.5, and apply both the exact likelihood method of Sowell, and the quasi-maximum
likelihood method of Haskins and Rafferty.

The ACF is shown in Figure 3.11. It drops off much slower than a series with
d=0. The smoothed periodogram is shown in Figure 3.12. Note the presence of
the low frequency spectrum even though the series is stationary. Table 3.1 shows
the results based on the exact maximum likelihood method. The estimate of d̂ =
0.37, compared with the actual value of 0.42. Table 3.2 shows the results of the
quasi-maximum likelihood estimator. The estimate of d=0.38. The two estimation
methods give relatively close parameter estimates.

Figure 3.11: ACF for Simulated Series

Figure 3.12: ACF for Simulated Series
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Coef. SE.
phi(1) 0.547384 0.046664
theta(1) -0.51774 0.019745
d 0.370546 0.043086
Fitted mean 5.23071 1.52687
logl -14.999

sigma2̂ 1.01178

Table 3.1: Exact Maximum Likelihood Estimates

Estimate Std. Error z value Pr( > |z|)
d 0.38462 0.01468 26.19 2.00E-16
ar 0.53558 0.0255 21 2.00E-16
ma -0.51697 0.02024 -25.54 2.00E-16

Table 3.2: Quasi-Maximum Likelihood Estimates

3.3.1 Testing the order of integration

The FD-F test, developed by Dolado, Gonzalo & Mayoral (DGM) [9] is a simple
test based on the Dickey-Fuller test. It evaluates the null hypothesis that a series
is I(d0) against the alternative that it is I(d1), where d0 and d1 are real numbers.

The testing regression is:

∆d0xt = φ∆d1xt−1 = et (3.3.25)

where, at ∼ I(0)
The test is based upon the t-statistic of the coefficient estimate of φ. The null

and alternative hypothesis are:

H0 : φ = 0 xt is FI(d0)
H1 : φ < 0 xt is FI(d1)

∆xd0t and ∆xd1t are differenced according the null and alternative hypotheses, re-
spectively.

When φ = 0, the series is fractional white noise, defined as ∆xd0t = et, implying
that xt is FI(d0) under the null hypothesis.

When φ < 0, xt is an FI(d1) process which can be expressed as

∆d1 = C(B)et where, C(B) = ((1−B)d0−d1 − φ)−1 (3.3.26)

All of the roots of the polynomial are outside the unit circle if −2(1−d1) < φ < 0.
When d0 = 1 and d1 = 0 this test is the standard DF test of I(1) vs. I(0). The

test of interest is d0 = 1 vs. 0 ≤ d1 ≤ 1. A test that xt is a random walk against
an alternative that xt is a mean reverting stationary series. 18

18As DGM point out the test can be applied to any H0 : FI(d0) vs. H1 : FI(d1) for d0 > d1.
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DGM show that the asymptotic properties of the test are determined by how far
the alternative hypothesis is from the null hypothesis. Given the nonstationarity
assumed under the null (d0 = 1), if the alternative is nonstationary (0.5 ≤ d1 < 1)
the test is standard Normal. If the alternative is stationary (0 ≤ d1 < 0.5) the limit
distribution of the test statistic is non-standard.
The FD-F test is standard Normal if either of the following is true:

1. The process is nonstationary under the null (d0 > 0.5) and (d1 − d0 < 0.5)

2. The processes are stationary under both hypotheses.

Otherwise the distribution is non-standard. DGM provide significance tables
for non-standard cases.

The DGM test is a Wald-type test derived under the assumption that d1 is
known, but as they show, any T 1/2-consistent estimator of d1 can be used.

Example 3.3.

In this example we estimate d for a daily index of cumulative excess market returns
for the period July 1, 1926 - December 30, 2017. The data, which is provided by
Kenneth French, consists of the returns for all companies listed on the New York,
American and NASDAQ stock exchanges. French reports daily returns in excess of
the yield on 1 month T-Bills. We used this data to calculate an index of cumulative
returns. The index is shown in Figure 3.13. Applying GPH, the estimate of d is
found to be 0.9833 with a standard deviation of 0.022. This result suggests that the
index is nonstationary and mean reverting. We can test the random walk hypothesis
against an alternative of d1 using the FD-F test. The results of the FD-F test are
shown in Table 3.3. The test suggests that we can reject the null hypothesis that
the index is a random walk.

Figure 3.13: Cumulative Excess Returns on Equities
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Coefficients:
Estimate Std. Error t-Stat p-value

Intercept 2.15E-04 6.83E-05 3.142 0.00168
est.φ 8.62E-02 6.40E-03 13.455 2.00E-16

Table 3.3: Regression Results for FD-F Test

3.4 Determinants of Long Memory

The origins of long memory in financial and economic data has always been difficult
to rationalize. Granger [10] explained the presence of long memory as a property of
aggregation. Consider the aggregation of i = 1, ..., N cross-section AR(1) processes,

xit = αixi,t−1 + eit (3.4.1)

where, eit is noise, eit is orthogonal to ejt, and ai is orthogonal to ejt for all i,j, and

t. Granger showed that the τ th autocovariance of the sum, xt =
N∑
i=1

xit is,

γ(τ)x = Aτ 1−q (3.4.2)

and, xt ∼ I(1− q/2)
Diebold and Inoue [7] show that regime switching and long memory can easily be
confused.

3.5 Applications

3.5.1 Long-Term Memory in Stock Market Prices

Andrew Lo [18] tests for long range dependence in equity prices using a variation of
the rescaled-range test (R/S) developed by Hurst [15]. Hurst a hydrologist, studied
the long term storage capacity of reservoirs. He is best known for his study of the
ebbs and flows of the Nile River. Hurst developed the R/S statistic as a measure
of the long range dependence that he observed in his studies of the Nile and other
rivers.

Given a time series of asset returns, x1, x2, . . . , xn, the R/S statistic is defined
as,

Rn =
1

sn

[
max

1≤k≤n

k∑
j=1

(xj − x̄n)− min
1≤k≤n

k∑
j=1

(xj − x̄n)

]
(3.5.1)

where,

sn =

[
1

n

n∑
j=1

(xj − x̄n)2

]1/2

(3.5.2)
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Calculating the RS Statistic

To calculate R0:

1. Calculate the sample mean, m, for the series.

2. Create a mean adjusted series, yt = xt −m for t = 1, 2, . . . , n.

3. Calculate the cumulative deviation series,

zt =
t∑
t=1

y1 for t = 1, 2, . . . , n (3.5.3)

4. Create a range series:

Rt = max(z1, z2, . . . , zt)−min(z1, z2, . . . , zt)t = 1, 2, . . . , n (3.5.4)

5. Create a standard deviation series:

St =
1

T

[ t∑
t=1

(xt −m)2

]0.5

(3.5.5)

6. Calculate the rescaled range series:

(R/S)t = Rt/St for t = 1, 2, . . . , n (3.5.6)

The R/S statistic is sensitive to short-range influences, so it is possible to con-
clude that there is long range dependence in a series when in fact it is actually a
symptom of short-run autocorrelation. As a result, early studies of equity returns
applied the R/S test and concluded that long-memory existed! Lo(1991) modified
the test to include short run dependence in the statistic, and showed that the earlier
equity studies were incorrect. He was unable to find long memory in equity returns.
The modified test by Lo corrects for short term dependence:

Rq =
1

sq

[
max

1≤k≤n

k∑
j=1

(xj − x̄n)− min
1≤k≤n

k∑
j=1

(xj − x̄n)

]
(3.5.7)

where,

s2
q = s2

n

(
1 +

2

T

2∑
j=1

wqjρj)
2

)
wqj = 1− j

q + 1
q < T (3.5.8)

ρj for j = 1, . . . , q are the sample autocorrelation for xt.
There are problems with the asymptotics of Lo’s version of the RS statistic

when xt is fat tailed. This led Lo to conclude that the test should only be used
as a preliminary test, similar to a Portmanteau. That is, it should be used to
complement a more comprehensive analysis of long term memory.
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Estimating the Hurst Exponent

The Hurst exponent (H) is used to measure long memory dependence in time series.
It is related to the R/S statistic as follows:

E(R/S)t = c ∗ tH (3.5.9)

The H coefficient is the slope in the log-log transformation:

ln(R/S)t = c+H ∗ ln(t) (3.5.10)

How does H relate to d?

d = H − 0.5 (3.5.11)

• H = 0.5 indicates a random (white noise) series.

• A value in the range 0.5 < H < 1 indicates a time series with long term
positive autocorrelation. The series is trending.

• A value in the range 0¡H¡0.5 indicates a series with long term switching be-
tween high and low values in adjacent pairs (negative autocorrelation).

3.5.2 A Nonlinear Long Memory Model for US Unemploy-
ment

In their 2002 paper, van Dijk, et.al.[8] model the unemployment rate in the US as
a fractionally integrated smooth transition autoregression (FI-STAR). They chose
this approach to capture two key features of the unemployment rate: persistence,
and asymmetry. The asymmetry is apparent in Figure 3.14 which contains monthly
unemployment rates from January 1948 through December 2018. The slope of
the unemployment rate series during recessions is much steeper than the slope
during economic expansions. The unemployment rate tends to increase quickly and
decrease slowly. One possible explanation for this is that labor is a quasi-fixed factor
of production. Employers are hesitant to layoff workers until they are absolutely
certain that they must. The reason for the hesitance may be that employers have
invested time and money in workers and they do not want to lose their investment.
More generally, the asymmetry may be the result of asymmetric costs associated
with firing and hiring workers.

Figure 3.15 illustrates the high degree of persistence in the unemployment rate
data. The ACF is statistically different from zero for lags up to 50 months. The
decline in the ACF is much slower than one would expect from an I(0) stationary
series.19 The shape is much more similar to the hyperbolic decline that characterizes
a fractionally integrated series.

19The ACF for an I(0) stationary series typically declines exponentially.
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Figure 3.14: US Unemployment Rate

Figure 3.15: ACF - US Unemployment Rate

The FI-STAR functional form of van Dijk, et al. is,

xt = (φ1,0 + φ1,1xt−1 + · · ·+ φ1,pxt−p)(1−G(st, γ, c))

+ (φ2,0 + φ2,1xt−1 + · · ·+ φ2,pxt−p)G(st, γ, c) + et

(3.5.12)

where, γ > 0, et is white noise, and G is a logistic function,

G(st, γ, c) = (1 + exp(−γ(st − c)/σst))−1 (3.5.13)
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yt is the observed series, and xt is a fractionally differenced series.

(1− L)dyt = xt (3.5.14)

We know from our earlier discussion, that yt is covariance stationary if 0 < d < 0.5,
and it is invertible if d > −0.5. As the transition variable, st, increases, G(st, γ, c)
changes monotonically from zero to one. σst is the standard deviation of st.

The smoothness of the change in G is determined by the slope parameter of the
logistic function, γ. When γ = 0, G(st, γ, c) = 0.5 for all st. In this case the model
parameters are fixed across all states. When γ → ∞, G(st, γ, c) is an indicator
function, and the change in parameters from one state to the other is immediate.

The FI-STAR model has a long term, and a short term component. Equation
3.5.12 is the short term component. The effective AR parameters in this equation
change with the state. The weights of the two sets of parameters are determined
by the logistic transition equation.

Equation 3.5.14 is the long term component. It is constant in the sense that the
transform from yt to xt is determined by the fixed parameter, d.

We estimate the model using two approaches. In the first approach we estimate
the model in three steps: 1) estimate the difference parameter, d; 2) estimate the
parameters for the transition function, G(γ, c), and 3) estimate the AR parameters
for the differenced series. In the second approach we estimate all of the model
parameters simultaneously.

Two Step Estimation

We begin our analysis by testing for non-stationarity. An augmented Dickey-Fuller
test with 9 lags rejected the null hypothesis that the series is non-stationary. Next,
we estimate the difference parameter using the ”hurstexp” command in the pracma
library. The simple rescaled range method in the ”hurstexp” command estimates
that H = 0.803, so the difference operator d = 0.303. Since d < 0.5, the series is
stationary.

The differenced unemployment rate is displayed in Figure 3.16.20. The asym-
metry present in the original series is also present in the differenced series.

20The series was differenced using the ”diffseries” command in the ”fracdiff” library
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Figure 3.16: Fractionally Differenced US Unemployment Rate, d = 0.3

As Dijk, et.al. note, estimation of the AR parameters is linear given the pa-
rameters d, γ, c. This suggests a grid search where we select d, γ, c and minimize
Q in 3.5.15, below. The AR parameters are estimated by minimizing the following
function:

Q =
T∑
t

(
xt − φ̂1(d, γ, c)Gt(d, γ, c) − φ̂2(d, γ, c)(1−Gt(d, γ, c)

)2

(3.5.15)

where φ̂i, i = 1, 2 denote the two AR functions in equation 3.5.12.

Figure 3.17 shows the grid search results when d = 0.43. There are quite a few
values of γ and c that have an SSR between 30 and 35. The minimum SSR for this
grid search was 30.6. with γ = 16 and c = 2. Since the value for C is at the edge
of the search grid, we the grid was extend along the c axis. The results are shown
in Figure 3.18.
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Figure 3.17: Sum of Square Residuals - Grid Search, d=0.3

Figure 3.18: Distribution of Threshold Values

The AR parameters for the two regimes can be estimate using the ’lstar’ com-
mand in the ’tsDyn’ package. The user provides the differenced series (xt), the
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number of lags for the AR processes, the state variable (st), and lag for st.
21

21R help describes additional options available to the end user.
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3.6 Exercises

1. Derive the ACF for a random walk.



3.7. R CODE FOR EXAMPLES 85

3.7 R Code for Examples

Example 3.1

library(fracdiff)\\

fdGPH(x,bandw.exp = 0.5)\\

k1 $\leftarrow$ kernel("daniell",m=14)\\

spectrum(x,k1)

where x is the series being differenced, and bandw.exp is the bandwidth parameter.
The default value for the bandwidth parameter is 0.5. The bandwidth is used to
set the width of the frequency interval. It is defined as M = trunc(T band.w)). If the
bandwidth is set too wide the periodogram may smooth out important peaks in the
spectral density. If the bandwidth is too narrow the periodogram will be very noisy.

R code for example 3.2

library(fracdiff)

library(forecast)

library(arfima)

sim1 = fracdiff.sim(n=2500, ar=0.5,ma= -0.5, d= 0.42)

Acf(as.ts(sim1\$series))

k1 = kernel("daniell",m=14)

spectrum(sim1\$series,k1)

arfima(sim1\$series,order=c(1,0,1),back=T) \textbf{(exact ML)}

fracdiff(sim1\$series,nar=1,nma=1) \textbf{(quasi ML)}

R code for example 3.3

lequity = log(equity)

dlequity = diff(lequity)

out = fdGPH(lequity)

flequity = diffseries(lequity,out\$d)

lagfl = lag(flequity)

alldat = ts.intersect(dlequity,lagfl,dframe=TRUE)

summary(lm(alldat[,1]~alldat[,2], na.action=NULL))

FI STAR Example

fstar<-function(p){

x<-rinput

lag<-4

N<-nrow(x)-lag

H<-p[1]

gamma<-p[2]

c<-p[3]

a0<-p[4]
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a1<-p[5]

a2<-p[6]

a3<-p[7]

a4<-p[8]

b0<-p[4]

b1<-p[5]

b2<-p[6]

b3<-p[7]

b4<-p[8]

dunrate<-diffseries(x[,2], d=H-0.5)

res<-matrix(data=NA,nrow=N,ncol=1)

ssr<-matrix(data=NA,nrow=N,ncol=1)

j<-1

for( i in 5:835) {

G<-exp(-gamma*(x[i,3]-c)/rinput[i,4])

up<-a0+a1*dunrate[i-1]+a2*dunrate[i-2]+a3*dunrate[i-3]+a4*dunrate[i-4]

dn<-b0+b1*dunrate[i-1]+b2*dunrate[i-2]+b3*dunrate[i-3]+b4*dunrate[i-4]

res[j]<-x[i,2]-(up*G+dn*(1-G))

ssr[j]<-res[j]*res[j]

j<-j+1

}

return(sum(ssr))

}

gridvec$out<-rep(NA)

#simple grid search

for(j in 1:420){

p<-c(0.93,gridvec[j,2],gridvec[j,3],0,0.5,0.3,0.2,0.1,0,0.5,0.3,0.2,0.1)

outstar<-optim(par=p,fstar,method=c("Nelder-Mead"))

print(outstar$value)

gridvec[j,4]<-outstar$value

print(j)

}

library(lattice)

gamma<-gridvec[,2]

c<-gridvec[,3]

ssr<-gridvec[,4]

wireframe(ssr~gamma*c,drape=TRUE,col="Blue",scales=list(arrows=FALSE),at=c(25,40,100,200),main="Grid Search for gamma and c")
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Chapter 4

Dynamic Linear Models

In this lecture we discuss the estimation of dynamic linear models, also known
as linear state space models.1 We begin with a discussion of the Kalman Filter.
As you will see it is quite natural to describe the Kalman Filter in a Bayesian
framework. Following the discussion of the Kalman filter we will discuss a more
general, Bayesian approach to estimating dynamic linear models. We end the lecture
with a review of several applications in finance.

4.1 Introduction

The dynamic linear model consists of two equations, the state equation, and the
measurement equation. The state equation (4.1.1 ) determines the state of nature,
βt, at each point in time. The state of nature is a Markov process in the sense that
(βt|βt−1, ..., β0 = βt|βt−1) The state vector is unobserved. We will assume that Gt

is known and does not vary over time, and so throughout the lecture we will refer
to it simple as G. In most applications of interest, G is assumed to be the identity
matrix.2 The disturbance term, wt, is Normal iid noise.

βt = Gtβt−1 + wt, wt ∼ N(0,Wt) (4.1.1)

Note that if G is the identity matrix, then the state of nature follows a random
walk.

The measurement equation (4.1.2) contains two sets of observed values, yt, t =
1, 2, ..., T which is the observed value of interest, and Ft which is a txk matrix of
explanatory variables. yt, may be a univariate or multivariate.

yt = Ftβt + vt, vt ∼ N(0, Vt) (4.1.2)

In this discussion, unless stated otherwise, we will assume that yt is univariate. Ft
may vary over time. The relationship between Ft and βt is linear. The disturbance
term et is Normal iid noise. The two disturbance terms in the system, et and

1Readers interested in additional reading on state space models should see Durbin and Koop-
man [7] which is an excellent book on the topic.

2The ’dlm’ package in R allows G to vary over time.

89
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wt, are independent. We are primarily interested in a method for estimating the
unobserved state of nature, βt, which changes over time.

In the early 1960’s, Kalman [10], and Kalman and Bucy [11] introduced an
optimal method (know as the Kalman Filter) for estimating the state space model
(equations 4.1.2 and 4.1.1 ). The Kalman filter was originally introduced in the
engineering literature as a method for filtering noisy data to identify and predict an
underlying signal. It was subsequently adopted in the statistics and econometrics 3

literature as an alternative to standard regression analysis which assumes that the
state of nature, or regression coefficients, are fixed over time.

The Kalman filter is a sequential forecasting and updating procedure which
lends itself naturally to a Bayesian interpretation. In each time period, the filter
is used to update the estimate of the state of nature, and to forecast the value of
next periods observed variable, yt+1. We will also discuss smoothing in this lecture.
Smoothing is essentially a retrospective adjustment to the Kalman Filter estimates
of the state parameters.

It can be useful to think of the Kalman filter, and the smoothing process, as
providing estimates of the state parameter conditional on the available observed
data y1, ..., yT . Let the estimate as β̂k|T = β̂k|T (y1, ..., yT ). Then, we can define the
following

1. Prediction k ≥ T

2. Filtering k = T

3. Smoothing: k ≤ T

4.1.1 Some useful model specifications

Dynamic linear models (DLM) constitute a large class of models with time varying
parameters. Two useful models are the 1st order DLM, and the 2nd order (DLM).
4 The first order DLM, also called the local level model is,

Local Level Model

yt = βt + vt, vt ∼ N(0, Vt) (4.1.3)

βt = βt−1 + wt, wt ∼ N(0,Wt) (4.1.4)

where vt and wt are independent. This is a state space model where F=G=1.The
observed variables yt, is the sum of a trend component (β) and a noise term. The
trend component follows a random walk. The level parameter βt is a locally weighted
mean. The local level model is first difference stationary,

∆yt = ∆βt + ∆vt (4.1.5)

∆yt = wt−1 + vt − vt−1 (4.1.6)

3Duncan and Horn [6] and, Meinhold and Singpurwalla [14] are two early examples of statisti-
cians describing the work of Kalman and Bucy.

4See West and Harrison, [21] for a detailed discussion of these two models, and dynamic linear
models in general
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Figure 4.1: Local Level model

An illustration of the local level model is shown in Figure 4.1. The green line
is simulated data representing yt. The red line is an estimate of the local level
parameter βt. The estimate of βt is much less volatile than yt, and tends to go lie
in the center of the yt values. The model was estimated using the Kalman filter.
Example 4.1 discusses estimation of the local level model using the ’dlm’ package
in R.

Linear Growth Model

The second order DLM, or the linear growth model, has the following specification,

yt = β1,t + vt, vt ∼ N(0, Vt) (4.1.7)

β1,t = β1,t−1 + β2,t + +w1,t (4.1.8)

β2,t = β2,t−1 + w2,t, (4.1.9)

(w1t,, w2,t) ∼ N(0,Wt) (4.1.10)

where β2,t represents the growth of the level of the series. In state space form

Ft =
[

1 0
]′

and G =

[
1 1
0 1

]

The ARMA Model in State Space Form

In addition to the 1st and 2nd order polynomial models, a number of common models
can be expressed in state space form, including the AR(p), MA(q), ARMA(p,q),
and multivariate regression models. In this section we discuss the equivalence of
the ARMA(p.q) and the state space model. While showing equivalence between the
ARMA and the state space model is somewhat involved, it is worth going through
the exercise as it provides a nice foundation for understanding the remainder of
the lecture. Later on in the lecture we will discuss estimation of the multivariate
regression model in state space form allowing for time varying regression parameters.
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Several approaches exist for describing the ARMA model in state space form.
We follow the approach of Hamilton [9]. Consider the following AR(1) model,

yt+1 = φyt + et+1 (4.1.11)

where etis iid, N(0, σ2). Using recursive substitution we can show that

yt+m = φmyt + φm−1et+1 + φm−2et+2 + ...+ φ1et+m−1 + et+m (4.1.12)

for m= 1,2,..., The optimal m step ahead forecast of yt is,

E[ym|ym−1, ym−2, ...] = φmyt (4.1.13)

The process is stable if |φ| < 1.
The measurement equation is

Yt = F ′β + vt (4.1.14)

where yt ∼ nx1, F’ is an nxr matrix of coefficients, and wt ∼ N(0,W ) is is mea-
surement error.5 Future values of yt are determined by the state variable,

yt+m = F ′Gmβt (4.1.15)

The state equation is,

βt+1 = Gβt + wt+1 (4.1.16)

where G ∼ rxr matrix, wt ∼ rx1, and wt ∼N(0,Wt) are iid.
We can also re-write the state equation using recursive substitution,

βt+m = Gmβt+1 +Gm−1wt+1 +Gm−2wt+2 + ...+G1wt+m−1 + wt+m (4.1.17)

for m = 1,2,..., and Gm is G multiplied by itself m times. Then,

E[βt+m|βt, βt−1, ...] = Gmβt (4.1.18)

Future values of the state vector only depend on past values through the current
value βt. The system is stable if all of the eigenvalues of G lie inside the unit circle.
The state space representation of the ARMA model captures the dynamics of the
measurement equation through the state equation.

We will now illustrate the equivalence between the ARMA(p,q) and the state
space model by writing a pth order autoregression in state space form.

(yt+1 − µ) = φ1(yt − µ) + φ2(yt−1 − µ) + ...+ φp(yt−p+1 − µ) + et+1 (4.1.19)

This can also be written as,
(yt+1 − µ)
(yt − µ)

...
(yt−p+2 − µ)

 =


φ1 φ2 . . . φp−1 φp
1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
0 1 . . . 1 0




(yt − µ)
(yt−1 − µ)

...
(yt−p+1 − µ)

+


et+1

0
...
0


(4.1.20)

5Hamilton’s version of the model also includes a matrix of predetermined or exogenous variables
[9].
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The first row of equation 4.1.20 is the same as equation 4.1.19. The other rows are
the identities, (yt−j − µ) ≡ (yt−j − µ) for j = 1, . . . , p− 2. Equation 4.1.20 has the
same form as the state equation 4.1.16, where r=p, and

βt = [(yt − µ), (yt−1 − µ), . . . , (yt−p+1 − µ)] (4.1.21)

wt+1 = (et+1, 0, . . . , 0)′ (4.1.22)

G =


φ1 φ2 . . . φp−1 φp
1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
0 1 . . . 1 0

 (4.1.23)

The measurement equation is,

yt = µ+ F ′βt (4.1.24)

where the first row of F’ is the first row of a (pxp) identity matrix.
Now, suppose that F in the measurement equation 4.1.24 is replaced with a

vector of parameters so that it is written as,

yt = µ+ [1, θ1, θ2, . . . , θp−1]βt (4.1.25)

What kind of dynamic system does this specification describe? Assume that βt
evolves as an AR(p) vector so that it can be written as,

β1,t+1

β2,t+1
...

βp,t+1

 =


φ1 φ2 . . . φp−1 φp
1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
0 1 . . . 1 0



β1,t

β2,t
...
βp,t

+


wt+1

0
...
0

 (4.1.26)

The first row of 4.1.26 shows that β1,t+1 can written as an AR(p) process,

(1− φ1L− φ2L
2−, ...,−φpLp)β1,t+1 = wt+1 (4.1.27)

The jth row of equation 4.1.26 indicates that

βj,t = Ljβ1,t+1 (4.1.28)

Equations 4.1.25 and 4.1.28 imply that for j = 1, 2, 3, ..., p,

yt = µ+ [1 + θ1L+ θ2L
2 + . . .+ θp−1L

p−1]β1,t (4.1.29)

Subtracting µ from both sides of 4.1.29 and multiplying both sides by
(1− φ1L− φ2L

2−, ...,−φpLp) gives,

(1− φ1L− φ2L
2−, ...,−φpLp)(yy − µ) =

µ+ [1 + θ1L+ θ2L
2 + . . .+ θp−1L

p−1]×
(1− φ1L− φ2L

2−, ...,−φpLp)β1,t =

[1 + θ1L+ θ2L
2 + . . .+ θp−1L

p−1]w1,t (4.1.30)

Thus, equations 4.1.25 and 4.1.26 are equivalent to an ARMA(p,p-1).
The ’dlm’ package in R provides the end user with the ability to specify ARMA

dlm models with a single command.
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4.1.2 Bayes Theorem

The Kalman filer is a recursive procedure for the inference of βt. It is easiest to
understand in a Bayesian context. Bayes theorem states that

P (A|B) =
P (A ∩B)

P (B)
=
P (B|A)

P (B)
(4.1.31)

P (B|A) = P (A|B)P (B) (4.1.32)

We can rewrite this basic formulation of Bayes Theorem in terms of a prior
distribution, likelihood, and posterior distribution:

p(θ|yt) =
p(yt|θ)p(θ)

p(y)
(4.1.33)

p(y) =

∫
θ

p(yt|θ)p(θ)dθ (4.1.34)

p(θ|yt) ∝ p(yt|θ)p(θ) (4.1.35)

Equation 4.1.33 is the basis for Bayesian inference. It contains known and unknown
quantities. The known quantity is the data, denoted yt. The unknown quantities are
the parameters, denoted θ. Bayesian inference refers to the updating of prior beliefs
into posterior beliefs conditional on observed data. p(θ) is the prior distribution for
the state of nature. It represents the modelers beliefs prior to observing the data.
p(yt|θ, xt) is the likelihood and describes the data generating process of yt. p(θ|yt)
is the posterior distribution, and describes the probability distribution of the state
of nature after the data has been observed. p(y) is the marginal likelihood. It
is a normalizing constant in the sense that it guarantees that the area under the
posterior curve integrates to one.

The posterior kernel (4.1.35) states that the posterior distribution is propor-
tional to the product of the likelihood and the prior. Bayesian inference is often
done using the kernel, but calculating moments of the posterior requires the use of
the full model specification, including the marginal likelihood.

Definition - Density Kernel
The probability of a random variable ,X, often has the form kg(X) where k is
a numerical constant whose role is to ensure that kg(X) integrates to one. The
remaining portion of the density, g(X) is called the kernel of the density function.
To illustrate, the univariate Normal distribution (4.1.36) and its kernel (4.1.37) are
shown below.

p(x) =

√(
τ

2π

)
e−
(
−τ
2

)
(x−µ)2 (4.1.36)

p(x) ∝ e−
(
−τ
2

)
(x−µ)2 (4.1.37)

where τ is the precision, or the inverse of the variance.
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4.2 The Kalman Filter

The Kalman filter is a sequential process which can be used for estimating a dynamic
linear model. The filter updates estimates of the state variables βt each period as
new information arrives. The sequential nature of the Kalman filter lends itself
naturally to a Bayesian interpretation. For instance, we can describe a step for the
Kalman filter as follows

p(state of nature|data) ∝ p(data|state of nature)
× p(state of nature)

Using the notation from the state space model we can write the Bayes formula as

p(βt | yt,Yt−1) ∝ p(yt | βt−1,Yt−1)× p(βt−1 | Yt−1) (4.2.1)

where Yt−1 is a vector representing the entire history of yt observations as of time
t-1.
At time, t-1 our knowledge of the state of nature can be described as

βt−1|yt−1 ∼ N(β̂t−1,Σt−1)) (4.2.2)

This is the posterior value of βt at time, t-1. Note that the distribution of the
posterior is Normal, the mean is an expectation, and Σ is the variance.

The Kalman updating procedure may be thought of as consisting of two stages:

1. The estimate of βt prior to observing yt.

2. The estimate of βt after observing yt.

At time t-1, prior to observing yt, the state equation 4.1.1 is used to estimate βt.
The prior (βt|yt−1) is defined as6

βt ∼ N(Gβ̂t−1, Rt = GΣt−1G
′
+Wt) (4.2.3)

After observing yt we can calculate the likelihood, and the posterior. To calculate
the likelihood we define the forecast error for yt based on the forecast at t-1,

et = yt − ŷt = yt − FtGβ̂t−1 (4.2.4)

Note that Ft, G, and βt−1 are known, so once yt is observed, the forecast error is
known.

Bayes formula (4.2.1) can be rewritten as,

p(βt | et,Yt−1) ∝ p(et | βt,Yt)× p(βt | Yt−1) (4.2.5)

The measurement equation 4.1.2 can be used in conjunction with the forecast error
to write

et = Ft(βt −Gβ̂t−1) + vt (4.2.6)

6The mean and variance in 4.1.1 come from applying the following result to the measurement
equation: if X ∼ N(µ,Σ) then CX ∼ N(Cµ,CΣC ′) where C ′ is the transpose of C.
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Since vt ∼ N(0, V ),

et ∼ N(Ft(βt −Gβ̂t−1), Vt) (4.2.7)

Bayes theorem can then be used to obtain the posterior at time t. Note that we
need to calculate the marginal likelihood, p(yt) which requires the evaluation of an
integral.

p(βt | et,Yt−1) =
p(et | βt,Yt−1)× p(βt | Yt−1)∫

allβt
p(et, βt | Yt−1)dβt

(4.2.8)

Once we have the posterior, p(βt | et,Yt−1), the filter proceeds to the next time
period using the posterior from time t as the new prior in equation 4.2.3.

The calculation of the posterior can be simplified using the approach of Meinhold
and Nozer [14]. Their method makes use of the definition and properties of a
bivariate Normal density. Before discussing their method, we briefly review the
bivariate Normal density function.

4.2.1 Bivariate Normal Density

Let X1 and X2 be bivariate normal random variables, The bivariate density can be
written as,

(
X1

X2

)
∼ N

[(
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

)]

where µ1 and µ2 are the mean of X1 and X2, respectively. Σi,j, i, j = 1, 2 are
the variance and covariance of X1 and X2. One of the properties of the bivariate
Normal distribution is that given the joint density of X1 and X2 there is a closed
form solution for the conditional densities X1 | X2 and X2 | X1. The converse also
holds, meaning that given the conditional densities we can write the joint density.
The conditional of X1 | X2 is defined as,

X1 | X2 = x2 ∼ N(µ1 + Σ12Σ−1
22 (x2 − µ2),Σ11 − Σ12Σ−1

22 Σ21) (4.2.9)

As pointed out by Meinhold and Nozer, the conditional density (X1 | X2 = x2) can
be interpreted in terms of a regression of X1 on x2. The term µ1 + Σ12Σ−1

22 (x2−µ2)
is a regression function and Σ12Σ−1

22 is a regression coefficient.

4.2.2 Deriving the Posterior Distribution

We will now substitute the mean and variance for βt and et which were discussed
in Section 4.2 into the equations of the bivariate Normal distribution. Let X1 ⇔ et
and X2 ⇔ βt, then based on the result in equation 4.2.3, µ2 ⇔ Gβ̂t−1 and Σ22 ⇔ Rt.
Based on 4.2.7, and the definition of X1 | X2 we can write

µ1 + Σ12Σ−1
22 (x2 − µ2)⇔ Ft(βt −Gβ̂t−1) (4.2.10)
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µ1 + Σ12R
−1
t (βt −Gβ̂t−1)⇔ Ft(βt −Gβ̂t−1) (4.2.11)

Therefore, µ1 ⇔ 0 and Σ12 ⇔ FtRt.
Next, we find the variance of et as follows:

Σ11 − Σ12Σ−1
22 Σ21 ⇔ Σ11 − FtRtF

′
t ⇔ Vt (4.2.12)

and so, Σ11 ⇔ Vt + FtRtF
′
t .

Now that we have identified the distributions, we can write the joint distribution
for et and βt using the converse property of the bivariate Normal distribution.

(
βt | Yt−1

et | Yt−1

)
∼ N

[(
Gβ̂t−1

0

)
,

(
Rt RtF

′
t

FtRt Vt + FtRtF
′
t

)]

To obtain the posterior distribution, p(βt|Yt), we use fact that the conditional
distribution can be derived from the joint distribution.

(βt | et, Yt) ∼ N(Gtβ̂t +RtF
′
t(Vt + FtRtF

′
t)
−1et,

Rt − RtF
′
t(Vt + FtRtF

′
t)
−1FtRt) (4.2.13)

In summary at a point in time, t, we have the following posterior estimates for
the mean and variance of βt conditional on et.

β̂t = Gβ̂t−1 +RtF
′
t(Vt + FtRtF

′
t)
−1et (4.2.14)

Σt = Rt −RtF
′
t(Vt + FtRtF

′
t)
−1FtRt (4.2.15)

Given initial values at t=0 for β̂0 and Σ0 we can use the recursive procedure outlined
above to estimate β̂t at each point in time. Note that the Kalman Filter does not
include estimates of the variance terms, Vt and Wt. Estimation of these parameters
will be discussed later.

4.2.3 Interpreting the Posterior

The posterior mean of β̂t is the sum of two parts, the mean of the prior for β̂t and the
one step ahead forecast error times a correction factor. The correction factor which
is called the ’Kalman gain’, has the same form as the coefficient from a regression
of βt on et. We can see this by noting that

Σ12Σ−1
22 = RtF

′
t(Vt + FtRtF

′)−1 (4.2.16)

The Kalman filter can be viewed as a series of regression functions of βt on et
with a new intercept (Gtβ̂t) and slope (RtF

′
t(Vt+FtRtF

′)−1) in each time period. In
effect, the Kalman filter is a learning process, where each new data point provides
potentially new information about the model parameters.7

7As pointed out by Meinhold and Nozer [14] the ”regression” only involves one observation of
et and βt at each point in time.
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Properties of the Kalman Filter

• Linear - the Kalman filter discussed in this lecture estimates the state βt for
a linear dynamic system.

• Recursive - estimating the current state βt does not require the entire history
of observed data, yT .

• Optimal - if all of the noise terms are Gaussian the Kalman filter minimizes
the mean square error of the parameter estimates. If the noise terms are non-
Gaussian the Kalman filter will be the best linear estimator, but a nonlinear
estimator may be better.

Example 4.1.

We estimate a first order dynamic linear model using the Kalman filter. The mea-
surement and state equations are as follows:

yt = βt + vt, vt ∼ N(0, Vt)
βt = βt−1 + wt, wt ∼ N(0,Wt)

The observed data yt is a univariate series consisting of a trend component, µt,
and a noise component , et. The trend component follows a random walk. The
Kalman filter is applied to simulated data where, W = 0.25, V = 1, y0 = 0, N =
100, F = 1, G = 1. Note that these parameters are fixed in time. The simulated
data, along with the Kalman filter estimate of βt are plotted in Figure 4.4. The
posterior estimate of βt is highly correlated (ρ = 0.95) with yt, and generally follows
the trend of the data. The R code for this example is provided at the end of the
chapter. The estimation was done with the ”dlm” package.8 Note that the variances
for the measurement and state equations was provided. Section 4.4.1 discusses the
use of maximum likelihood to estimate these parameters.

Example 4.2.

In this example, instead of using a packaged routing, we write our own Kalman filter
and estimate time varying ”betas” for the CAPM, where the dependent is a value
weighted portfolio of excess returns for the firms in the durable goods sector. The
market rate is the market return in excess of the risk-free rate, where the market
is represented as a value-weighted return of all CRSP firms incorporated in the US
and listed on the NYSE, AMEX, or NASDAQ. The risk free rate is the one-month
Treasury bill rate from Ibbotson Associates and provided by K. French. All of the
data is available in the Kenneth French Data Library.9

The data set consists of of monthly returns beginning in July 1926 and ending
in May 2018. The model specification is,.

rt − rft = αt + βt ∗ (rmt − rft) + vt, vt ∼ N(0, Vt) (4.2.17)

αt = αt−1 + wα,t, wα,t ∼ N(0,Wα,t) (4.2.18)

8There are several R packages that provide Kalman filtering, including KFAS, DSE and FKF.
9http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Figure 4.2: Kalman Filter - local level model

βt = βt−1 + wβ,t, wβ,t ∼ N(0,Wβ,t) (4.2.19)

where rt is the return for the durable goods index at time t, rf t is the risk free
rate, and rmt is the market return at time t. We assume that, Gt = Ft = 1, and W
and V are constant over time.

The program for the filter is at the end of the chapter. Note that we have not
estimated any of the parameters in the set Φ = (Vt,Wt, G, Ft). At this point we
either assume they are known, or, as in the case of variance terms, we make random
draws from a uniform distribution. A plot of the ’beta’ estimates is shown in Figure
4.3. The red line is the least squares estimate of the ”beta” for the entire data set.

4.3 Smoothing

In dynamic models, it is more common to use the smoothed distribution of the
state vector than the basic forward filter. The Kalman filter uses data up to and
including time, t, to estimate the state vector at time t. The smoother looks
backwards in time at all of the data, and revises the estimates of the state vector at
each time period. The smoother is retrospective in the sense that it reverses time
and estimates p(βt | βt+1, YT ) ∀T .

There are a number of different smoothers. In this lecture we discuss two
smoothers which are commonly used. First we discuss the Rauch, Tung and Striebel
(RTS) [16] smoother. The RTS smoother is sometimes called a fixed interval
smoother since it is based on a fixed time interval. In this discussion the inter-
val is the entire span of the observed data, yT . 10 The other smoother that we

10Other types of smoothers include the fixed point smoother, and the fixed lag smoother. These
two types of smoothers have applications in engineering.
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Figure 4.3: Kalman Filter Estimates - Durable Goods Betas

discuss is the DeJong and Shephard simulation smoother[3]. Simulation smoothers
utilize Gibbs sampling to draw from the posterior distribution.

4.3.1 The RTS Smoother

The RTS smoother can be derived using the bivariate Normal distribution frame-
work. 11 First we define the joint distribution 12

(
βt | Yt
βt+1 | Yt

)
∼ N

[(
β̂t
Gβ̂t

)
,

(
Σt ΣtG

′

GΣt Rt+1

)]

Based on the properties of the bivariate Normal distribution,

p(βt | βt+1 = bt+1, Yt) = β̂t + ΣtG
′R−1

t (βt+1 −Gβ̂t) (4.3.1)

In order to derive the smoother we need to add an additional step and take expec-
tations across all values of βt+1. The reason for this can be seen by noting that
equation 4.3.1 is conditioned on a specific (unobserved) value of βt+1. Applying the
law of iterated expectations gives:

E[βt|YT ] = E[E[βt | βt+1, YT ] | YT ]

= E[E[βt | βt+1, Yt]|YT ]

= E[β̂t + ΣtG
′R−1

t (βt+1 −Gβt)|YT ]

= βt|t + Σt|tG
′R−1

t+1(βt+1|T − βt+1|t) (4.3.2)

11See Särkka [17] for a derivation of the smoother and its variance, as well as a comprehensive
discussion of Bayesian smoothing in general.

12The cov(βt, βt+1|YT ) = cov(βt, Gβt + wt|YT ) = cov(βt, Gβt|YT ) + cov(βt, wt|YT ) =
Gcov(βt, βt|YT ) = GΣt|t
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Figure 4.4: Smoothed posterior - local level model

where t ≤ T . Note that β̂t, Gβ̂t,Σt, and Rt are all calculated during the forward
pass (Kalman filter), so they are known when smoothing. As a result, conditioning
on T is the same as conditioning on t.

Looking at equation 4.3.2 we see that the smoother at t is equal to the posterior
from the Kalman filter at t, plus the spread between the smoothed state parameter
at t + 1, βt+1|T , and the prior estimate of of the state parameter at t, βt+1|t, times
an adjustment factor. The adjustment factor consists of the prior and posterior
variances.

The variance of the smoother estimate shown in equation 4.3.3 is also derived
using the bivariate Normal distribution and taking expected values.

Σt|t+1 = Σt|t + Lt(ΣT |t − Σt+1|t)L
′
t (4.3.3)

where Rt+1|t = GΣtG
′ +Wt+1 and Lt = Σt|tG

′R−1
t+1|t

Derivation of the variance is given as an exercise at the end of the chapter.

Example 4.3. In this example we apply the smoother to the simulated data from
example 4.1. The smoothed parameter estimates (Figure 4.4) are a bit less corre-
lated with yt (ρ = 0.83) but they provide a better sense of the underlying trend
or ”signal” in the data. The additional R commands used for this example are
provided at the end of the Chapter in Section 4.8 .

Example 4.4. In this example we extend example 4.2 and write our own smoother
to go along with the Kalman filter. We apply the smoother to the beta estimates
for the durables goods sector. The results are shown in Figure 4.5. While a number
of software packages offer Kalman smoothers we see that it doesn’t take too many
lines of code to write our own. At this point it is important to understand the role
of the variance.
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Figure 4.5: Smoothed Betas - Durable Goods

4.3.2 A Simulation Smoother

An alternative class of smoothers which has generated a lot of interest is the sim-
ulation smoother. Early development of the simulation smoother was done by
Fruwirth-Schnatter (1994) [8], Carter & Kohn (1994) [12], and DeJong & Shephard
(1995) [3]. The simulation smoother uses Gibbs sampling to sample from the joint
posterior distribution, p(β, θ|YT ), where β is a time series of the latent states, and
θ contains the time series of unknown parameters which we will are assume are the
variances of the measurement and state equations, V and W. The Gibbs sampler
is a Markov Chain Monte Carlo simulation method, and will be discussed in detail
in the lecture on MCMC. For the time being, it will suffice to understand that the
Gibbs sampler is a sequential procedure that draws parameter estimates from the
conditional densities p(β|θ, Y ) and p(θ|β, y). The sequence of draws will eventually
converge to draws from the method marginals densities, p(θ) and p(β). Convergence
requires that the processes that characterizes the draw have the proper Markovian
properties. 13

There are several approaches for drawing samples from the posterior distribu-
tion. First, the latent states can be drawn for each time period. That is, draw
βt from p(βt, θt|Yt) for t = 1, ..., T . This approach can be inefficient, and both
Fruwirth-Schnatter (1994) [8], Carter & Kohn (1994) [12] suggest using a multi-
state approach based on the following identity,

p(β|y, θ) = p(βt|y, θ)p(βt−1|y, βt, θ) . . . p(β1|y, β2, . . . , βt, θ) (4.3.4)

The smoother developed by Fruwirth-Schnatter, which applies when p(β|y, θ) is

13Basically the stochastic processes must be recurrent and nt have absorbing states for the
conditional densities to converge to marginal densities. The Gibbs sampler is discussed in Chapter
5
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Gaussian, consists of the following steps,14

• Apply the Kalman filter to obtain β̂t and Σt for all t.

• Sample the most recent value of the state vector β
(s)
T from

p(βT |YT , θ) ∼ N(β̂T |T ,ΣT |T ) (4.3.5)

• Sample βst for t = T − 1, . . . , 1 from the density p(βt|βt+1, yt, θ).

DeJong and Shephard (1995) [3] proposed an alternative simulation smoother that
involves sampling from the posterior distribution of the model disturbances rather
then sampling the posterior of the state variables. Conditional on the latent pa-
rameter set, ω = (ω

′
0, ω

′
1, . . . , ω

′
n.), yt is assumed to be generated by the following

state space model,

Yt = Ftβt + Ttut (4.3.6)

βt+1 = Gtβt +Htut (4.3.7)

where, ut ∼ N(0, σ2), and the coefficient matrices may depend implicitly on ω. The
simulation smoother draws η ∼ p(η|y, ω) , where η = (η

′
0, η

′
1, . . . , η

′
n), and ηt = Ztut.

The definition of Zt, which determines the distribution used to draw ηt, is arbitrary.
For instance,

• If Zt = I then ηt is drawn from p(η|y, ω).

• If Zt = Tt then samples of ηt are drawn from the measurement equation
disturbance terms.

• If Zt = Ht then samples of ηt are drawn from the state equation disturbance
terms.

The first step in applying the simulation smoother is to run the Kalman filter for
t = 1, 2, . . . , n. The Kalman equations are as follows:

et = yt − Ftβt
Dt = FtPtF

′

t + TtT
′

t

Kt = (GtPtF
′

t +HtT
′

t )D
−1
t

βt+1 = Gtβt +Ktet

Pt+1 = GtPtL
′

t +HtJ
′

t

where Lt = Gt −KtFt and Jt = Ht −KtTt. et is the innovation vector, Dt is the
scaled innovation covariance matrix, and Kt is the Kalman gain. The values of et,
Dt, and Kt are saved for calculating the smoother. In the smoother phase, which
reverses time and runs for t = n, n− 1, ..., 1, ηt is calculated and stored,

ηt = Zt(T
′

tD
−1
t et + J

′

trt) + εt (4.3.8)

14The a more in depth discussion of the simulation smoother in the lecture on Bayesian inference
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where,

Ct = Zt(I − T ′tD−1
t Tt − J ′tUtJt)Z ′t (4.3.9)

Vt = Zt(T
′
tD
−1
t Ft + J ′tUtLt)

rt−1 = F ′tD
−1
t et + L′trt − V ′tC−1

t εt

εt ∼ N(0, σ2Ct)

Ut−1 = F ′tD
−1
t Ft + L′tUtLt + V ′tC

−1
t Vt

rn = 0, Un = 0

ηt is a draw from the Gaussian density p(Ztut|y, ηt+1, ..., ηn, ω) with condition
mean of, Ft(T

′
tD
−1
t et + J ′trt), and a conditional covariance matrix, σ2Ct. DeJong

and Shephard’s smoother has several advantages over the state sampler. First, it
has fewer storage requirements than the state sampler which requires all one step
ahead estimates of βt and the corresponding covariance, Pt. It does not require the
inversion of Pt. It has enhanced numerical stability since it can operate in square
root form. It is easier to draw p(ω|y, η) then it is to draw p(ω|y, β)

To better understand how the smoother works, consider the case where Zt = Ht,
and let Ωt = HtH

′
t. As noted earlier, the definition of Zt determines the distribution

used to draw ηt. In this case, the equations that define the smoother (4.3.9) simplify
to,

Ct = Ωt − ΩtUtΩt, εt ∼ N(0, σ2Ct), Vt = ΩtUtLt (4.3.10)

rt−1 = Z ′tD
−1
t et + L′trt − V ′tC−1

t εt (4.3.11)

Ut−1 = F ′tD
−1
t Ft + L′tUtLt + V ′tC

t−1
t Vt

A draw of ηa is from the distribution p(Htut|y, ω), with conditional mean ηt =
Ωtrt + εt, and conditional covariance matrix of σ2Ct.

4.4 Parameter Estimation

As previously noted, complete specification of the dynamic linear model requires an
estimate of the variance for both the state and measurement equation. The Kalman
filter provides a mean and variance at each point in time for the unobserved state
variables. The filter also provides one step ahead forecasts at each time period
along with a mean and variance. However, the filter does not estimate any of
the model parameters, which includes Φ = (Ft, Gt, Vt,Wt, β̂0,Σ0). A number of
approaches have been proposed to estimate the parameters, including maximum
likelihood (MLE), expectation maximization (EM), and Gibbs sampling. MLE and
EM are discussed in this lecture and the Gibbs approach is covered in the lecture
on Bayesian inference.

4.4.1 Maximum Likelihood

Estimation of the parameters using ML is an iterative procedure. Assume that the
state variable at t = 0 is Normal, β0 ∼ N(0,Σ0). In addition, assume that the
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disturbance terms for the measurement and state equations, vt and wt, are jointly
Normal.15 Given the forecast error for the measurement equation and its variance,

et = yt − ŷt = yt − FtGβ̂t−1 (4.4.1)

and

Ωt = Vt + FtRtF
′
t (4.4.2)

The likelihood function is

logL(Φ) = −1

2

n∑
t=1

log|Ωt(Φ)| − 0.5
n∑
t=1

e′t(Φ)Ωt(Φ)−1et(Φ) (4.4.3)

Estimation proceeds as follows (see Gupta and Mehra):

1. Initialize the parameters, Φ0.

2. Run the Kalman filter to obtain forecast errors and an estimate of Ω0
t .

3. Update the parameter estimates by maximizing the likelihood function (4.4.3)
using a numerical optimization routine such as Newton-Raphson using the
values from step 2.

4. Iterate through steps 2 and 3 until the change in LogL(Φ) is small.

4.4.2 The EM Algorithm

Shumway and Stoffer (1982) [19] proposed using the Expectation Maximization
(EM) algorithm in conjunction with the Kalman filter and smoother to estimate
state space models. EM is typically used for estimation when a model contains
latent variables. In the case of the linear state space model the state variable, βt is
latent. Suppose, however, that we actually observed the states in addition to the
measurement data. That is, at each point in time observe pairs (yt, βt). The joint
density over all T is,

f(βt, Yt) = f(β0)
T∏
t−1

f(βt|βt−1)
T∏
t=1

f(yt|βt) (4.4.4)

The joint density is the product of three densities,

1. The initial value for β

2. The density of the state variable at t conditioned on its value at t-1

3. The density of the measurement variable, yt, conditioned on the state variable
at t.

15Estimating the parameters using maximum likelihood was first proposed by Schewppe [18].
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The log likelihood is,

−2lnL(Φ) = ln|Ω0|(β0 −Gµ0)′Ω−1
0 (β0 − µ0)

+T ln|W |+
T∑
t=1

(βt −Gβt−1)′W−1(βt −Gβt−1)

+T ln|V |+
T∑
t=1

(βt − Ftβt)′V −1(βt − Ftβt) (4.4.5)

where µ0 is the mean of β0.
If the states were observed, then the model parameters could be estimated by

maximizing the likelihood function in the standard fashion. However, as the states
are unknown Shumway and Stoffer 16 propose using the EM approach. That is,
maximize the expected likelihood conditional on a set of parameters Φ(j),

Q(Φ|Φ(j)) = E
{
− 2lnL(Φ|Yt,Φj)

}
(4.4.6)

The conditional expectation is defined in terms of smoothed state estimates,

Q(Φ|Φ(j)) = ln|Ω0|+ tr
{

Ω−1
0 [Σt

0 + (β0|T − µ0)(β0|T − µ0)′]
}

+T ln|W |+ tr
{
W−1[S11 − S10Φ′ − ΦS ′10 + ΦS00Φ]

}
+T ln|V |+ tr

{
V −1

T∑
t=1

(yt − Ftβt|T )(yt − Ftβt|T )′ + FtΣt|TF
′
t ]
}

(4.4.7)

where the smoother are defined as,

S11 =
T∑
t=1

(βt|Tβ
′
t|T + Σt|T ) (4.4.8)

S10 =
T∑
t=1

(βt|Tβ
′
t−1|T + Σt−1|T ) (4.4.9)

S00 =
T∑
t=1

(βt−1|Tβ
′
t−1|T + Σt−1|T ) (4.4.10)

Φj are the current values of the parameters, and the conditional subscripts indicate
smoothed values, e.g. β0|T is β0 after smoothing.

Minimizing equation 4.4.7 with respect to the parameters at iteration j results
in the following update equations,

G(j) = S10S
−1
00 (4.4.11)

W (j) = T−1(S11 − S10S
−1
00 S

′
10) (4.4.12)

V (j) = T−1

T∑
t=1

[(yt − Ftβt|T )(yt − Ftβt|T )′ + FtΣt|TF
′
t ] (4.4.13)

The updates for the initial mean and variance are

16This discussion follows Shumway and Stoffer (2006) [20] which summarizes the results in
Shumway and Stoffer (1982) [19].
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βj0 = β0|T and Σ
(j)
0 = Σ0|T

Given these equations, the EM algorithm iterates between estimating expected
values of the parameters and maximizing the (incomplete) likelihood function (4.4.3).
The steps are as follows:

1. Set j = 0 and initialize Φj

2. Calculate the likelihood function (4.4.3) using Φj .

3. Expectation step: Filter forward and smooth backward using parameter esti-
mates Φj and then calculate equations 4.4.8 - 4.4.10.

4. Maximization Step: Update the parameter estimates using equations 4.4.11 -
4.4.13 to obtain Φj+1

5. Repeat steps 2 to 5 until convergence.

Example 4.5.

In this example we use the ’dlm’ package to estimate the betas for the durable
goods sector that was estimated in Example 4.2. The variances of the state and
measurement equation are estimated using maximum likelihood. Figure 4.6 shows
the smooth time varying ”beta”. The horizontal line is the OLS estimate for the
entire data set. The red lines are the 95% confidence interval. Interestingly, the time
varying estimate of beta was below the OLS estimate for most of the estimation
period. The two exceptions are the Great Depression and the Great Recession.

Figure 4.6: Smoothed CAPM Beta - Durable Goods Sector
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4.5 Forecasting

As we saw earlier, the recursive nature of the Kalman filter results in one step ahead
forecasts at each time period, t. Now we will use the filter to calculate l-step ahead
forecasts.17 Assume we have a data set consisting of YT = {y1, ..., yT} observations.
Our objective is to forecast l periods into the future to T + l, where l = 1, 2, ...L.
Assume that we want the forecast value that minimizes the mean square forecast
error. This is, we want to find ŷT+l so that,

MSET+l = minE[(ŷT+l − yT+l)(ŷT+l − yT+l)
′|YT ] (4.5.1)

Since yt is a random variable, the value of Yt+l that minimizes equation 4.5.1 is the
expected value conditional on YT , 18

ȳT+l = E[yT+l|YT ] (4.5.2)

The measurement equation l periods into the future is,

yT+l = FT+lβT+l + vt (4.5.3)

Given the measurement equation, and equation 4.5.2,

β̄T+l = E[βT+l|YT ] (4.5.4)

Σ̄T+l = E[(β̄T+l − βT+l))(β̄T+l − βT+l)
′] (4.5.5)

The MSE forecast is,

ȳT+l = FT+lβ̄T+l (4.5.6)

The MSE variance is19

E[(ȳT+1 − yT+1)(ȳT+1 − yT+1)′] = FT+1Σ̄T+lF
′
T+1 (4.5.7)

Durbin and Koopman [7] show that the l-step ahead forecast of the mean and
variance for the state parameters can be estimated using the Kalman recursion
formulas by setting the disturbance of the state equation and the Kalman gain to
zero. Given these assumptions the l-step ahead forecast of the state parameter is

β̄T+l = Gβ̄T+l−1 (4.5.8)

and the variance is,

Σ̄T+l = GΣ̄T+l−1G
′ (4.5.9)

17This discussion in this section is based the work of Durbin and Koopman [7], Chapter 4,
Section 4.11.

18As noted in Durbin and Koopman, [7], this follows from the fact that in general, E((X −
λ)(X − λ)′) is minimized for λ = µ, where µ is the mean of X.

19This can be shown by expanding E[(ȳT+1 − yT+1)(ȳT+1 − yT+1)′], taking expectations, and
noting that β̄β′ = ββ̄′
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Example 4.6. In this example, we model home price appreciation (HPA) as a local
state space model, and forecast it for 36 months. HPA is defined as the monthly
growth rate of the Case-Shiller National Home Price Index. The model is estimated
using data from January 1987 to April 2018. The model is then used to forecast
’out-of-sample’ growth for May 2018-May 2019.

The model is,

hpat = βt + vt, vt ∼ N(0, Vt) (4.5.10)

βt = βt−1 + wt, wt ∼ N(0,Wt) (4.5.11)

where vt and wt are independent.
Historical home price appreciation along with the 36 month projections is shown

in Figure 4.7. Historical growth ranges from -12.5% to +14.5 percent. The projected
growth rates range from 3% to 10%. The forecast command in the dlm package
allows the user to draw a sample from the forecast distribution. In this example
the sample size is 10.

Figure 4.7: Case-Shiller National Home Prices - Year-over-year growth

4.6 Applications in the Literature

4.6.1 The Macroeconomy and the Yield Curve

In this section we discuss two papers by Diebold, et. al. that examine the dynamic
nature of the Nelson-Siegel model of the yield curve, and it’s relationship to the
economy. In ”The Macroeconomy and the Yield Curve”, Diebold, Rudebusch &
Aruoba (2006) (ADR) [5] use the Nelson-Siegel [15] 3 factor model described in
Diebold & Li (2006) [4] to analyze the relationship between the yield curve and
inflation, real economic activity, and monetary policy.

Nelson and Siegel fit the forward rate curve at a given date with the following
three factor model,

ft(τ) = β1,t + β2,texp(−λtτ) + β3,t(λt)exp(−λtτ) (4.6.1)
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By averaging over the forward rates, equation 4.6.1 can be expressed in terms of
spot rates.20 The cross-section of yields at a point in time is:

yτ = β1,t + β2,t

(
1− e1−λτ

λτ

)
+ β3,t

(
1− e1−λτ

λτ
− e−λτ

)
(4.6.3)

where τ is the maturity, and β1,t, β2,t, β3,t and λ are parameters.
The parameter λt governs the exponential decay rate:

• Small values of λt produce slow decay and can better fit the long maturity
bonds.

• Large values of λt produce fast decay and better fit the curve at short matu-
rities.

• λt also governs where the loading on βb3,t achieves its maximum.

Diebold and Li (2006) [4] interpret βit, i = 1, ..., 3 as latent dynamic factors.
The loadings for each factor are plotted across maturity in Figure 4.8.

• The loading on factor β1,t is 1. Since this loading is fixed across maturity β1,t

can be interpreted as a long term factor.

• The loading on factor β2,t is a function that starts at 1 and decays monotoni-
cally and and rather quickly to zero. β2,t can be viewed as a short term factor,
since it loads more heavily on short rates.

• The loading on β3,t starts at zero, increases, and then decreases to zero. It
can be viewed as a medium term factor.

Alternatively, Diebold & Li describe the three time varying factors as the level
(Lt), slope (St), and curvature (Ct) of the yield curve at a point in time.

• Level, Lt - β1,t corresponds to the level of the yield curve. An increase in β1,t

raises the yield level across the curve.

• Slope, St - β2,t corresponds to the slope of the yield curve. An increase in
β2,t increases short rates more than long rates, changing the slope.

• Curvature, Ct - β3,t corresponds to the curvature of yield curve. An increase
in β3,t causes the medium term yields to increase more than short and long
term yields.

20The spot rate is defined as,

y(n) =
1

n

∫ n

0

f(s)ds (4.6.2)

where y = spot rate at t, f is the forward rate, and n is the number of periods ahead when the
forward contract expires
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Figure 4.8: Nelson-Seigel Factor Loadings

By re-interpreting the Nelson-Seigel model as a dynamic model, Diebold and Li
were able to replicate many of the empirical facts that characterize movements in
the term structure of interest rates over time. In addition, they found that although
one month ahead forecasts of the yield curve using the model were no better than
a random walk, 1 year ahead forecasts outperformed a number of different models
in out-of-sample tests.

Their model specification is,

yτ = Lt + St

(
1− e1−λτ

λτ

)
+ Ct

(
1− e1−λτ

λτ
− e−λτ

)
(4.6.4)

where Lt, Ct, and St are time varying versions of β1, β2, and β3, respectively. The
model can be written in state space form. The state equation is,Lt − µLSt − µS

Ct − µC

 =

a11 a12 a13

a21 a22 a23

a31 a32 a33

Lt−1 − µL
St−1 − µS
Ct−1 − µC

+

ηt(C)
ηt(S)
ηt(C)

 (4.6.5)

The measurement equations, which relates the N yields to the unobserved states at
a point in time is shown in equation 4.6.6.


y(τ1)
y(τ2)

...
y(τN)

 =



1

(
1−e1−λτ1

λτ1

) (
1−e1−λτ
λτ1

− e−λτ1
)

1

(
1−e1−λτ2

λτ2

) (
1−e1−λτ
λτ2

− e−λτ2
)

...
...

...

1

(
1−e1−λτN

λτN

) (
1−e1−λτ
λτN

− e−λτN
)


LtSt
Ct

+


εt(τ1)
εt(τ2)

...
εt(τN)


(4.6.6)

where t= 1,2,...,T. In matrix form the state and measurement of the model are,

(ft − µ) = A(ft−1 − µ) + ηt (4.6.7)
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and

yt = Λft + εt (4.6.8)

where ηt and εt are orthogonal Normal white noise terms.[
ηt
εt

]
∼ WN

([
0
0

] [
Q 0
0 H

])
(4.6.9)

ADR (2006) use the Nelson-Siegel 3 factor model described in Diebold & Li to an-
alyze the relationship between the yield curve and inflation, real economic activity,
and monetary policy. They define a ‘macro-yield’ model 21 using equations 4.6.7
and 4.6.8 with f ′ = (Lt, St, Ct, CUt, FFRt, INFLt) where

• CUt is manufacturing capacity utilization

• FFRt is the Federal Funds Rate

• INFLt is the rate of inflation

For this specification, Λ ∼ T×6 matrix with zeroes in the last three columns so that
the yield still only loads on the three curve factors. The measurement equation is a 6
equation first order VAR system consisting of the 3 yield factors and the 3 economic
factors. This specifications allows the macroeconomic factors to contribute to the
forecast of the yield factors.

The VAR functional form provides a useful framework to evaluate the rela-
tionship between the macro variables and the yield curve. Using impulse-response
functions ADR evaluate 4 groups of shocks: macro reponse to macro shocks; macro
response to yield curve shocks; yield curve response to macro shocks; yield curve
response to yield curve shocks. Some key results are summarized below:

Macro response to yield curve shock:

• Macro variables have a negligible response to curvature shocks.

• An increase in the slope is matched by a one-to-one increase in FFRt.

• An increase in the level of the yield positively shocks all three macro variables.

• An increase in Lt ,which is correlated with inflation, lowers the real rate of
interest measured as FFRt − Lt, causing the economy to expand in the near
term.

Yield curve response to macro shocks:

• Curvature shows very little response to macro shocks;

• The slope factor responds positively to shocks in all three macro variables.

• An increase in FFRt immediately flattens the curve.

• Positive shocks to capacity utilization and inflation result in delayed positive
responses.

• Shocks to macro variables effect the level of the yield curve.

21They also estimate a ’yield only’ model that is similar to the Diebold & Li model, and a
’macro only’ model.
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4.7 Exercises

1. Simulate a data set of 500 observations assuming a 2nd order DLM model
with µt= 0.85 , and Wt=0.2. Then, write a program to estimate the model
using a Kalman filter.

2. Derive the Kalman filter mean and variance for a random walk without drift.

3. Derive the variance of the Kalman smoother discussed in section 4.3. Hint:
V ar(x) = Ey(V ar(X|Y = y)) = +V ary(E(X|Y = y))

4. Using R write a program for an RTS smoother to accompany the Kalman
filter code in Example 2.2.

5. Write an R program to estimate the 95% confidence intervals for the (RTS)
smoothed parameters.
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4.8 R Code for Examples

4.8.1 Example 4.1

library(dlm)

#Simulate data for a local level model

W = 0.25

V = 1.0

n = 100

x0 = 0.00

w = rnorm(n,0,sqrt(W))

v = rnorm(n,0,sqrt(V))

x = y = rep(0,n)

x[1] = x0 + w[1] #Initial State equation

y[1] = x[1] + v[1] # Initial Observation equation

for (t in 2:n) {

x[t] = x[t-1] + w[t] #Update state equation with random draw

y[t] = x[t] + v[t] } #Update observation equation with random draw plus new state value

#Estimate the dlm for the local level model

dlm1 <- dlmFilter(y,dlmModPoly(order=1,dV=1.0,dW=0.25))

#Plot the data, y, and the fitted "beta".

plot(y,type=’l’, lwd=2, main="Local Level Model",col="blue")

lines(dlm1$m[-1],col="red",lwd=2)

legend("topright", legend=c("y", "beta"), col=c("blue","red"),lty=1:1 ,lwd=2)

4.8.2 Example 4.2

#The Kalman Filter

y<-durables

X<-cbind(rep(1), market)

T<-length(y)

k<-2 #unknown states}

#Define containers

beta<-matrix(data=NA,nrow=T,ncol=k) #store series of state parameters

W<-matrix(data=NA,nrow=k,ncol=k)

VCV<-matrix(data=NA,nrow=T,ncol=2*k) #VCV matrix for state disturbance terms

bnew<-matrix(data=NA,nrow=k,ncol=1) #posterior

bold<-matrix(data=NA,nrow=k,ncol=1) #prior

sigold<-matrix(data=NA,nrow=k,ncol=k) #prior variance

signew<-matrix(data=NA,nrow=k,ncol=k) #Posterior variance

#Set initial values

bold[1]<-0

bold[2]<-1

sigold[1,1]<-0.1

sigold[1,2]<-0

sigold[2,1]<-0
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sigold[2,2]<-0.1

e<-0

beta[1,1]<-bold[1]

beta[2,1]<-bold[2]

#Apply Filter

for(t in 2:T){

v<-runif(1)

W[1,1]<-runif(1)*0.5

W[1,2]<-0

W[2,1]<-0

W[2,2]<-runif(1)*0.5

F<-matrix(X[t,],nrow=1,ncol=k)

e <- y[t] - F%*%bold #Forecast error

R<-sigold + W

gain<-R%*%t(F)%*%solve(v+F%*%R%*%t(F)) #Kalman gain

bnew<-bold + gain%*%e #posterior state estimate

signew<-R - gain%*%F%*%R #posterior variance of state estimate

beta[t,1]<-bnew[1]

beta[t,2]<-bnew[2]

bold<-bnew

VCV[t,1]<-signew[1,1]

VCV[t,2]<-signew[1,2]

VCV[t,3]<-signew[2,1]

VCV[t,4]<-signew[2,2]

sigold<-signew

}

bout<-ts(beta[,2],freq=12,start=c(1926,8))

plot(bout,type="l",lwd=3,col="blue",main="Kalman Filter Beta Estimate - Durable Goods",ylab="Beta")

abline(h=0.61,lwd=3,col="red")

4.8.3 Example 4.3

skal <- dlmSmooth(dlm1)

lines(dropFirst(skal$s),col="green")

legend("topright", legend=c("y", "beta","smooth"), col=c("blue","red","green"),lty=1:1 ,lwd=2)

4.8.4 Example 4.4

#Smoother

SVCV<-matrix(data=NA,nrow=T,ncol=2*k)

SVCV[T,]<-VCV[T,]

bsnew<-matrix(data=NA,nrow=T,ncol=2)#smoothe state

bsnew[T,]<-beta[T]

L<-matrix(data=NA,nrow=k,ncol=k)

for(t in {T-1}:1){
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W<-matrix(c(runif(1)*0.025,0,0,runif(1)*0.025),nrow=k,ncol=k)

sigold<-matrix(VCV[T,],nrow=k,ncol=k)#prior variance

R<- G%*%sigold%*%t(G) + W

R<-(R+t(R))/2

L = sigold%*%t(G)%*%solve(R)

bold<-matrix(beta[t,],nrow=k,ncol=1)

bnew<-matrix(bsnew[t+1,],nrow=k,ncol=1)

bsnew[t,]<-c(bold + L%*%(bnew - G%*%bold))

signew<-matrix(SVCV[t+1,],nrow=k,ncol=k)

SVCV[t,]<-c(sigold + L%*%(signew - R)%*%t(L))

}

bout<-ts(beta[-1,2],freq=12,start=c(1926,8))

plot(bout,type="l",lwd=3,col="blue",main="Kalman Filter Beta Estimate - Durable Goods",ylab="Beta")

abline(h=0.61,lwd=3,col="red")

4.8.5 Example 4.5

buildTVP <-function(parm) {

parm$ <- exp(parm)

return( dlmModReg(X=x, dV=parm[1], dW=c(parm[2],parm[3])) )

}

start.vals= c(0,0,0)

TVP.mle = dlmMLE(y=y, parm=start.vals, build=buildTVP, hessian=T)

TVP.dlm <- buildTVP(TVP.mle\$par)

TVP.f <- dlmFilter(y, TVP.dlm)

TVP.s <- dlmSmooth(TVP.f)

4.8.6 Example 4.6

y<-ts(CH3CaseShiller[,3],freq=12,start=c(1988,1))

#Define a 1st Order DLM with unknown W and V

#Define model for maximum likelihood

build <- function(parm) {

dlmModPoly(order = 1, dV = exp(parm[1]), dW = exp(parm[2]))}

#Estimate W and V using MLE Using the ‘dlm’ package

fit <- dlmMLE(y, rep(0,2), build )

names(fit)

unlist(build(fit$par)[c("V","W")])

# Define the model

simPoly<-dlmModPoly(order=1,dV=3.284197e-10,dW=1.863845e-01)

unlist(simPoly)

#Run the Kalman Filter

simFilt <- dlmFilter(y, simPoly)

str(simFilt, 1)

n <- length(y)
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attach(simFilt)

#Plot the observed series

plot(y,type="l",xlab="time",ylab="")

# Plot the filter state series (means)

lines(dropFirst(simFilt$m),col=2)

title(paste("V and W Estimated Using ML"))

#36 month ahead forecasts

set.seed(1)

unFore <- dlmForecast(simFilt, nAhead = 36, sampleNew = 10)

plot(window(y, start = c(1988, 1)), type = ’l’,

xlim = c(1988, 2022), ylim = c(-15, 15.0),

xlab = "", ylab = "%", main="Home Price Appreciation Projection")

names(unFore)

attach(unFore)

invisible(lapply(newObs, function(x) lines(x, col = "red")))

lines(f, type = ’l’)

abline(v = mean(c(time(f)[1], time(y)[length(y)])), lty = "dashed")
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[8] Frühwirth-Schnatter, Sylvia. ”Data Augmentation and Dynamic Linear Mod-
els”, Journal of Time Series Analysis, Vol.15, No. 2, 1994, pp. 183-202.

[9] Hamilton, James, ”State Space Models”, Handbook of Econometrics, Volume
IV, Editors R.F. Engel and D.L. McFadden. 1994 Elsevier Science

[10] Kalman, R.E. ”A New Approach to Linear Filtering and Prediction Problems”,
Journal of Basic Engineering, March 1960 35-45.

[11] Kalman, R.E. and R.S.Bucy. ”New Results in Linear Filtering and Prediction
Theory”, Journal of Basic Engineering, March 1961 95-108.

[12] Carter, C.K. and R Kohn, ”On Gibbs Sampling for State Space Models”,
Biometrika, Vol.81, No. 3 (Aug. 1994), pp. 541-553.

[13] Koopman, Siem Jan, and Charles S. Bos, ”State Space Models with a Common
Stochastic Variance”, Journal of Business & Economic Statistics, Vol. 22, No.3
(July 2004), pp. 346-357.

119



120 BIBLIOGRAPHY

[14] Meinhold, Richard and Nozer D. Singpurwalla. ”Understanding the Kalman
Filter”, The American Statistician, May 1983, Vol.37 No.2.

[15] Nelson, C.R., Siegel, A.F., 1987. Parsimonious modeling of yield curve. Journal
of Business 60, 473–489.

[16] Rauch, H.E., C.T. Striebel, and F. Tung. ”Maximum likelihood estimates of
linear dynamic systems”, AIAA Journal 3:8, pp 1445-1480, 1965.

[17] Särkka, Simo, ”Bayesian Filtering and Smoothing”, Cambridge University
Press, 2013.

[18] Schweppe, C. F. (1965). Evaluation of likelihood functions for Gaussian signals.
IEEE Trans. Info. Theory 11, 61-70.

[19] Shumway, R.H. and D.S. Stoffer, ”An Approach to Time Series Smoothing and
Forecasting using the EM Algorithm”, Journal of Time Series Analysis, Volume
3, Issue 4, July 1982.

[20] Shumway, R.H. and D.S. Stoffer,”Time Series Analysis and its Applications”
2nd Edition, Springer, 2006.

[21] West, M. and P. J. Harrison, ”Bayesian Forecasting & Dynamic Models”,
Springer, 1997, 2nd Ed.



Chapter 5

Cointegration

5.1 Introduction

Up until this point our discussions have primarily focused on applications using
stationary series. If a time series is found to be integrated of order d, than we can
take the dth difference to create a stationary series, and then construct a model. In
this chapter we expand the breadth of models to include stationary processes that
are linear combinations of non-stationary processes. This is known as cointegration,
and as we will see there are several useful models that make use of the concept of
cointegration. The first model is the error correction model. In my experience, the
error correction model is one of the most useful tools available for forecasting time
series over long horizons. By combining long run equilibrium relationships with
short run deviations it takes advantage of information that exists in the levels of
non-stationary series along with the stationary change in level. A second useful
application of cointegration is pairs trading which involves identifying asset prices
that move together over time and create a stationary relationship (cointegration).
Statistically meaningful deviations from the long run relationship present trading
opportunities

5.2 Cointegration

We begin this section by reviewing some the differences between stationary and
non-stationary series as outlined by [1].

• If xt ∼ I(0) then 1) the variance of xt is finite; 2) an innovation to xt has
a finite life; 3) the autocorrelation of xt decreases steadily and have a finite
sum; 4) the expected crossing of xt = 0 occurs within a finite period of time;
5) the spectrum of xt, f(ω) has the property, 0 < f(f) <∞.

• If xt ∼ i(1) with x0 = 0 then 1) the variance of xt goes to infinity as t
goes to infinity; 2) an innovation to xt has a permanent impact on xt; 3) the
autocorrelation is one for k → ∞; 4) the time between expected crossings of
xt = 0 is infinite; 5) the spectrum of xt has the approximate shape f(ω) ∼
Aω−2d so that for small ω, so f(0) =∞.
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The variance of an I(1) series comes from the low frequencies of the series which
tend to be smooth and consist of long waves compared to a I(0) series. As a result
of the difference in the relative size the variances of an I(1) and I(0) series adding
the two together will almost always result in an I(1) series.

Suppose that we have two non-stationary time series X = (x1, x2, ,̇xn) and
Y = (y1, y2, ,̇yn) both of which are I(d). In addition assume that a and b are
constants and b 6= 0. In general it will be the case that,

zt = yt − a× xt, is also I(d) (5.2.1)

However, as Engel and Granger [1] point out, it is also possible that zt ∼ I(d− b),
where b > 0.

Definition

If X and Y are each integrated I(d), and a linear combination of X and Y is inte-
grated I(d-b) where b > 0 then the series are said to cointegrate.

zt = yt − αxt,where,zt ∼ I(d− b) (5.2.2)

For the time being we will focus on the case where we have two I(1) series. Later
we will generalize to the case of N series with multiple cointegrating relationships.
For the case where X and Y are both I(d) with d = b = 1. If X and Y cointegrate
then z = I(d − b) = I(0). A combination of two non-stationary processes are
combined to create a stationary process. Or, two series with long run trends and
infinite variances combine to form a stationary series that crosses zero often. The
cointegrating vector, z, is the equilibrium error of X and Y.

5.2.1 Testing for Cointegration

Testing for cointegration between two series is a two step process:

1. Test each series for non-stationarity. A popular test of non-stationarity is the
augmented Dickey-Fuller (ADF) test, which is available in most statistical
software packages. If the null hypothesis cannot be rejected then each series
is non-stationary.

2. Regress series X and Y against one another, and test the residuals for non-
stationarity. If the null hypothesis for the ADF test is rejected the two series
are assumed to cointegrate.

The ADF has 3 cases: 1) no intercept or trend; 2) an intercept; 3) an intercept and a
deterministic trend; Each case has a different set of critical values. The augmented
DF adjusts the original DF for autocorrelation. The specification for each of the 3
cases is as follows:

Case1 : ∆yt = γ ×∆yt−1 + Σp
j=1φj∆t−j + ηt (5.2.3)
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Case 1: The unit root test is carried out by testing the null hypothesis γ = 0
against γ < 0.

Case2 : ∆yt = µ+ γ ×∆yt−1 + Σp
j=1φj∆t−j + ηt (5.2.4)

Case 2: The unit root test is carried out by testing the null hypothesis γ = 0 against
γ < 0.

Case3 : ∆yt = µ+ β × trend+ γ ×∆yt−1 + Σp
j=1φj∆t−j + ηt (5.2.5)

Case 3: The unit root test is carried out by testing the null hypothesis γ = 0 against
γ < 0, or γ = β = 0 a

Example 5.1. As an illustration we will test the asset prices for Budweiser (BUD)
and Molson-Coors (TAP) to see if they cointegrate. It seems reasonable to assume
that they move together as both manufacture and market beer under well known
brand names. But no attempt has been made to investigate these firms, and while
they both sell beer one or both may be quite diversified. Figure 5.1 shows daily
adjusted prices for both stocks from Jan 2010 through May 2021.1. Both stock
prices follow a similar path, but BUD appears to be more volatile in recent years

Figure 5.1: Adjusted Daily Stock Prices

ADF test results for the two stocks are shown in Table 5.1. The test assumed
a ”drift” term , and the number of lags were selected using the AIC statistic. In
both cases we are unable to reject the null hypothesis that the series is a random
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Value of test-statistic is:
tau2 phi1

BUD -1.8135 1.8122
TAP -1.5683 1.3263
Critical values for test statistics:

1pct 5pct 10pct
tau2 -3.43 -2.86 -2.57
phi1 6.43 4.59 3.78

Table 5.1: ADF Test Results for BUD and TAP

walk. Figure 5.2 shows the residuals from the regression of TAP prices against BUD
prices. The residuals do not have a trend but there are long periods of time when
they are far away from zero. This is particularly true for the first 7 years. Results
for the ADF test on the residuals are shown in Table 5.2. The null hypothesis is
rejected, and we conclude that BUD and TAP cointegrate.

Figure 5.2: Residual series used to test for cointegration

5.3 Error Correction Models

In my experience, the error correction model (ECM) is one of the most useful tools
available for forecasting time series over long horizons. By combining long run

1The adjusted price is adjusted for corporate actions such as dividend payments and stock
splits
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Value of test-statistic is:
tau1

Residuals -2.6617
Critical values for test statistics:

1pct 5pct 10pct
tau1 -2.58 -1.95 -1.62

Table 5.2: ADF Test for Residuals

equilibrium relationships with short run deviations it takes advantage of information
that exists in the levels of non-stationary series along with the stationary change
in level. An error correction model is a dynamic system of two or more time series
which reflects a long run equilibrium as well as short term deviations from the
equilibrium. The ECM is specified as follows:

∆Yt = ∆Xt + αεt−1 + ut (5.3.1)

where Xt ans Yt are both integrated of order 1, I(1), and

εt−1 = Yt−1 = βXt−1 (5.3.2)

The change in Yt is due to the change in Xt and εt−1 which is viewed as the disequi-
librium term in the sense that it measures the extent to which Yt and Xt deviate
from their long run equilibrium values. If εt is non-zero the system is out of equi-
librium. Note also that α determines the rate at which εt returns to zero. Looking
at the ECM specification, we see that the model is a combination of levels and first
differences of X and Y. For the ECM to be internally consistent X and Y must
cointegrate. That is, if X and Y are I(1) then ∆X and ∆Y are I(0). Therefore the
equilibrium term, et−1, must also be I(0). It should be pointed out that the ECM
pre-dates the concept of cointegration by about 25 years, so this insight by Granger
and Engel was significant in reconciling the concept of cointegration with the ECM.

Granger Representation Theorem

ECM implies cointegration and cointegration implies ECM.

If X and Y are I(1) then ∆X and ∆Y are I(0). Therefore the equilibrium term,
et−1, must also be I(0). The converse also hold: if X is generated by an ECM then
X is cointegrated.

5.3.1 Pairs Trading

A common application of cointegration in finance is pairs trading. Recall that
equity prices are typically I(1). The idea behind a pairs trading strategy is to
identify pairs of equities whose prices have a long run relationship (cointegrate).
When the relationship deviates from equilibrium, buy the undervalued stock and
short sell the overvalued stock. In this strategy, you track the spread between the
stocks, and trade when the spread widens beyond the equilibrium level.
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Highly-correlated pairs often (but not always) come from the same sector be-
cause they face similar systematic risks. 2

5.4 VECM

5.4.1 Pesaran Model

2Caution: Two completely unrelated I(1) series may have a high correlation.
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5.5 R Code for Examples

5.5.1 Example 5.1

library(tidyquant)

library(tibble)

library(urca)

options("getSymbols.warning4.0"=FALSE)

options("getSymbols.yahoo.warning"=FALSE)

tickers = c("BUD", "TAP")

prices <- tq_get(tickers,

from = "2010-01-01",

to = "2021-05-28",

get = "stock.prices")

ggplot(data = prices, aes(x = date, y = adjusted, color = symbol)) +

geom_line(aes(group = symbol)) +

theme_classic() +

theme(legend.position = "bottom") +

ylab("Adjusted Price") +

ggtitle("BUD and TAP Jan 2010 to present")

tappr <- subset(prices,symbol=="TAP")

bud<- subset(prices, symbol=="BUD")

summary(ur.df(bud$adjusted,type=c("drift"),selectlags=c("AIC")))

summary(ur.df(tappr$adjusted,type=c("drift"),selectlags=c("AIC")))

reg_pr<-lm(tappr$adjusted~bud$adjusted)

summary(reg_pr)

names(reg_pr)

res<-ts(reg_pr$residuals, frequency = 250, start=c(2010-01-01))

plot(res)

summary(ur.df(res,type=c("none"),selectlags=c("AIC")))
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Chapter 6

Regime Change

6.1 Introduction

Economics and financial times series are often subject to temporary (and sometimes
permanent) changes in their statistical properties that can best be described as
regime changes. These changes are often abrupt, and quite apparent in a plot of
the data. For instance, and examination of daily returns for the S&P 500 shows
very clear clusters of high volatility. (see Figure 1.1).

Regime changes, whether the are temporary jumps or longer term shifts in the
mean or variance of an economic series constitute nonlinearities. A standard linear
model cannot capture a regime change, so an alternative approach is needed.

The following simple model is often used to convey the basic ideas behind a
switching regime model. Suppose that yt is an observable stationary time series,
and st is a random variable that takes a value of 1 if the economy is in an expansion,
and 0 when the economy is in a recession. Assume that the following model describes
yt:

yt = µst + φstyt−1 + σst + et where et ∼ iidN(0, 1) (6.1.1)

In this model the intercept, AR coefficient and volatility all change over time de-
pending on the state. (i.e. s = 0 or s = 1) The regime indicator st is unobserved,
and assumed to be a first Markov chain. That is, the probability of being in either
of the two states at time t is conditional on the state of the previous period, and
not the entire history of states.

Prob(st = j|st−1 = i) = pij, i, j = 0, 1 (6.1.2)

Since we haveassumed that there are 2 states, there a total of 4 transition proba-
bilities.

P =

[
p00 p01

p10 p11

]
131
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6.2 Hamilton’s Switching Regime Model

6.2.1 The EM Algorithm

6.3 Structural Change and Unit Root Tests

6.3.1 Andrews-Zivot Test

6.4 Regime Changes and Financial Markets

Ang and Timmerman
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Chapter 7

Introduction to Simulation

This lecture is designed to provide the reader with the basic level of understanding
needed to simulate from a posterior distribution in Bayesian inference. The lecture
begins with a discussion on generating uniform random variables. In many instances
this is the first step in generating non-uniform variates. This is discussed in section
2. The remainder of the lecture is focused on simulating from distributions with an
unspecified functional form.

7.1 Simulating Uniform Random Variables

A common version of the pseudo-random number generator (PRNG) is defined in
equation 7.1.1. Given an initial value or seed, this algorithm will produce a set of
N uniform random variables in the range [0, 1].

xi
M

= (kxi−1 + c)modM (7.1.1)

where k, c, and M are constants. Note that mod signifies the modulo operation, so
that XmodM returns the remainder after X is divided by M.

As an illustration, Figure 7.1 contains the output of 500 random uniform num-
bers using equation 7.1.1 and setting the seed = 1234, k = 200, M = 6 and c = 0.1.
A Portmanteau test on the series is unable to reject the null hypothesis that of
independence, and the coverage of the unit square seems reasonable. However, the
coverage is not uniform. In general, the PRNG can have areas where it under-
samples, and over-samples. Two areas where there is under-sampling are outlined
in red in Figure 7.1.

The quasi-random number generator (QRNG) is an alternative to the pseudo-
random number generator. The Halton sequence, defined in equation 7.1.2 is an
example of a QNRG.

St+1 =

[
St, St +

1

kt
, St +

2

kt
, . . . , St +

(k − 1)

kt

]
(7.1.2)

where k is a prime number.
As an illustration of how the Halton sequence generates a set of uniform random

numbers, begin with a prime number, say 3. Divide the unit line into thirds, then
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Figure 7.1: Uniform random numbers generated using equation

Figure 7.2: Comparison of QRNG and PRNG

ninths, then twenty-sevenths, etc. This results in the following sequence:[
0 , 1/3 , 2/3 , 1/9 , 4/9 , 7/9 , 2/9 , 5/9 , 7/9 , 1/27 , 10/27 , 19/27 , 4/27, . . .

]
(7.1.3)

Since the Halton sequence is defined on the unit line, it can be interpreted as
random draws from a uniform distribution. Consecutive observations in the Halton
sequence tend to be negatively correlated, so it generally provides better coverage
than a pseudo-random generator. 1

7.2 Simulating Non-Uniform Random Variables

Random numbers from non-uniform distributions are often based on an initial draw
of a uniform random variable. One approach for deriving non-uniform random
numbers is the inverse transform.

Definition: Inverse Transform Sampling Assume that X is a continuous
random variable with a continuous distribution function, F, so that Pr(X ≤ x) =

1Note that if you have two Halton sequences (based on different primes numbers) the first pairs
in the two sequences will be highly correlated. If you need independent random pairs you must
eliminate enough of the early pairs in the sequence to remove the correlation. Usually eliminating
the first 10 or 15 pairs will suffice.
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Figure 7.3: Some Densities and Functions that are Explicitly Invertible

F (x). Define the inverse of the cdf, F−1 as,

F−1(u) = inf{x : F (x) = u, 0 < u < 1} (7.2.1)

If U ∼ U [0, 1], then the random variable F−1(U) has the distribution F. To generate
a random variable X ∼ F , generate U from the Uniform distribution U [0, 1] and
apply the transformation x = F−1(u).

If the inverse is easily computed, the inversion method is the easiest and fastest
method of calculating a univariate random variable. Some useful transformations
are shown in Figure 7.3.

Example 7.1. The Pareto Distribution
In this example the inverse transform method is used to sample 100 random ob-
servations from a Pareto distribution.2 Figure 7.4 shows a QQ plot comparing the
sample distribution to theoretical distribution. Given the relatively small sample
size the fit seems most reasonable for values less than 2. Table ?? compares the
3 sample moments to the expected moments. The results support the QQ plot in
that the sample variance and skew are quite different from the expected variance
and skew.

Theoretical Sample
Mean 1.333 1.297
Variance 0.222 0.103
Skew 7.071 2.456

Table 7.1: Pareto Distribution Sample Moments vs. Theory

7.3 Importance Sampling

Importance sampling is a form of Monte Carlo integration. Suppose that we want
to to estimate the expected value in equation 7.3.2 but we are unable to calculate

2See section 8.6.9 for the definition of a Pareto distribution.
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Figure 7.4: QQ Plot for Pareto Random Variables based on The Inverse Transform

the integral analytically.

E[g(θ)] =

∫
g(θ)p(θ|x)dθ (7.3.1)

where p(θ|X) denotes the posterior density function.
Importance sampling (IS) introduces an auxiliary distribution h(θ) that can be

sampled from, and rewrites the expected value in equation 7.3.2 as,

E[g(θ)] =

∫
g(θ)

p(θ|x)

h(θ)
h(θ)dθ (7.3.2)

To implement IS, θi, i = 1, . . . , N observations are drawn from h(θ). The sample is
then used to create the following weights,

wi =
N∑
i=1

p(θi|x)

h(θi)
(7.3.3)

Monte Carlo integration is then used to estimate the expected value of g(θ):

E[g(θ)] =
N∑
i=1

wig(θi) (7.3.4)

Implementation of equation 7.3.4 does not account for the marginal distribution of
the posterior, p(θ|x). That is, just using the weights as described does not estimate
the normalizing constant in equation 7.3.5.

E[g(θ)] =

∫
g(θ)p(θ|x)dθ =

∫
g(θ)p(x|θ)p(θ)dθ∫

p(x|θ)dθ
(7.3.5)
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The IS approximation for the entire posterior including the marginal density of y,
can be estimated by normalizing the weights so that they sum to one.

Given a likelihood function p(y|θ, x) and a prior distribution, p(θ) IS can be
used to sample from the posterior distributions as follows:

1. Draw N samples from the importance distribution, h(θ).

2. Compute the unnormalized weights

w∗i = p(x|θi)p(θi)
h(θi)

3. Compute normalized weights
wi = w∗i∑N

i=1 w
∗i

4. The approximation of E[g(θ)] is
E[g(θ)] ≈

∑N
i=1 wig(θ)

Example 7.2. In financial risk analysis an important measure of loss is the expected
value conditional on exceeding the quantile:

E[x|x < q] =

∫ q
−∞ xf(x)dx∫ q
−∞ f(x)dx

(7.3.6)

This measures the average size of the loss when it falls below the cutoff value.
This measure is referred to as the expected shortfall, or expected tail loss, or Con-
ditional VaR (CVaR).

For the standard normal distribution the expected loss is:

E[X|x < q] =
−f(q)

F (q)
(7.3.7)

where f is the standard Normal pdf, and F is the standard Normal cdf.

To illustrate the IS algorithm, a random sample is drawn from the standard
normal density, and the average value is estimated, for the subset of observations
less than or equal to -2. Figure 7.5 shows the density for a sample of 1 million
random draws from a standard Normal density. Figure 7.6 is the density for all
values less than -2. The auxiliary distribution, shown in Figure 7.8 is Pareto with
location and scale both equal to 2. It has a shape that is similar to 7.6, but the
tail is much longer. 3 Using the IS method the E[X|x < −2] = −2.364502.
Applying equation 7.3.7 provides a check of the IS result. The analytic solution
yields E[X|x < −2] = .

7.4 The Perfect Sampler

Cassella(2001)

3When calculating the CVAR, the tail sample (Fig. 7.6) is multiplied by minus one.



140 CHAPTER 7. INTRODUCTION TO SIMULATION

Figure 7.5: Std. Normal Density Figure 7.6: Tail Density

Figure 7.7: Auxiliary Distribution
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7.5 Markov Processes

7.5.1 Ergodic Theorem

7.6 Metropolis - Hastings

7.6.1 Adaptive Metropolis-Hastings

Choosing an appropriate candidate density can be difficult when the one has very
little information about the shape of the target distribution. There have been

7.7 Gibbs Sampler

Suppose that we have an estimate of a joint density f(x, y1, . . . , yp), and we are
interested in obtaining characteristics of the marginal distribution,

f(x) =

∫
· · ·
∫
f(x, y1, . . . , yp)dy1 . . . dyp (7.7.1)

One approach for obtaining f(x) is to analytically solve the integral. An alternative
approach is to use the Gibbs sampler.4

The Gibbs sampler is a procedure for finding the marginal density, f(x), without
analytically solving the integral. Given a pair of random variables (X, Y ) Gibbs
generates a sample from f(x) by drawing a sequence of samples from the conditional
distributions, f(x|y) and f(y|x).

A starting value Y ′0 = y′0 must be specified by the user, then the Gibbs sampler
generates a sequence of random variables

X ′0, Y
′

0 , X
′
1, Y

′
1 , . . . , X

′
n, Y

′
n (7.7.2)

by drawing from the conditional distributions,

f(x′i|Y ′i = y′i) (7.7.3)

f(y′i+1|X ′i = x′i) (7.7.4)

Under general conditions, as p→∞ the distribution of X ′p converges to the true
marginal distribution f(x).

There are several possible approaches to sampling the marginal once the se-
quence has converged:

1. Sample the pth or final value from many independent repetitions of the Gibbs
sequence.

2. Generate one long Gibbs sequence and then extract every rth observation. For
r great enough the observations will be iid.

4This section is primarily based on the 1992 paper by Casella and George, [1]
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3. Use all realizations of X ′j for j > k. The observations will not be iid, but the
empirical series still converges to the true marginal density.

To understand how the Gibbs sampler works, consider the process of going from
x0 to x1 in the case of two random variables x and y. Given x0 the next step for
the Gibbs sampler is to draw y1. Given y1 a value for x1 can be drawn

This one step transition can be written as,

f(x1|x0) =

∫
f(x1|y)f(y|x0)dy (7.7.5)

Similarly a k step transition matrix can be written as,

f(xk|x0) =

∫
fxk|k−1

(x|t)fxk−1|x0(t|x0)dt (7.7.6)

As k → ∞ fxk|k−1
converges to the marginal distribution, f(x) which is the sta-

tionary point of equation 7.7.6. The series of steps that define the sequence of a
Gibbs sampler form a Markov chain. If the chain is recurent and does not have any
absorbing states, the sequence will converge to a unique distribution which is the
marginal distribution regardless of the starting point of the chain.

Example 7.3. In this example we use the Gibbs sampler to estimate the marginal
density of the binomial variable in a beta-binomial posterior density. This example
is a replication of an example in Casella and George [1]

One of the advantages to using the Gibbs sampler is that conditional distri-
butions are often relatively easy to derive. Consider the case when the posterior
distribution is the beta-binomial,

f(x, y) ∝
(
n

x

)
yx+α−1(1− Y )n−x+β−1 (7.7.7)

The marginal densities are,

f(x|y) ∼ Bin(n, y) (7.7.8)

f(y|x) ∼ Beta(x+ α, n− x+ β) (7.7.9)

Note that is a discrete variable and y is continuous. The analytical solution for f(x)
is:

f(x) =

(
n

x

)
Γ(α)Γ(β)

Γ(α + β)

Γ(x+ α)Γ(n− x+ β)

Γ(n+ α + β)
(7.7.10)

for x = 0, 1, . . . , n,
Following Cassela and George, two samples of size m=500 are drawn assuming,

n = 16, α = 2 and β = 5. One sample is based on the analytic solution and the other
is based on the Gibbs sampler. The histograms in Figure 7.3 compare the sample
two samples. The dark green area is the overlap between the two samples. There
is no systematic difference between the Gibbs sampler and the analytic results.

Why does Gibbs work
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Figure 7.8: Beta-Binomial, Gibbs Sampler vs.Analytic Solution

7.8 Sequential Importance Sampling

7.9 Particle Filters

7.10 Exercises

1. Show the steps used to derive the Halton sequence in the illustration (see 7.1.3
).
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7.11 R Code for Examples

7.11.1 Example

library(EnvStats)

library(moments)

rp<-1/(runif(100,min=0,max=1)^(1/4))

#rp<-rp[rp<5]

plot(density(rp),main="Random Pareto Observations",col="Red",lwd=2.5)

mean(rp)

var(rp)

skewness(rp)

kurtosis(rp)

7.11.2 Example

library(EnvStats)

x<-rnorm(100000,0,1)

plot(density(x),main="Standard Normal Density")

xs<- -x[x< -2] #Flip the sign

plot(density(xs),main="Tail of N(0,1), X<-2")

set.seed(1240)

hs <- rpareto(length(xs),location=2,shape=2) #sample from proposal density

plot(density(hs),main="Auxiliary Distribution: Pareto(2,2)")

wstar <- dnorm(hs,0,1)/dpareto(hs,location=2,shape=2) # importance weights

w <- wstar/ sum(wstar)## Normalized weights

sum(-w*xs) #Approximation of expected shortfall

-dnorm(-2)/pnorm(-2) #Analytic approach

7.11.3 Example

library(VGAM)

a=2;b=4;n=16;k=10;size=500

analyticfx<-rbetabinom.ab(size,n,a,b) #//Draw 500 obs. From betabinomial distribution

nrep=1500

y<-matrix(0,nrep,1)

x<-matrix(0,nrep,1)

gibbsfx<-matrix(0,size,1)

y[1]<-0.1

x[1]<-rbinom(1,n,y[1])

for(i in 2:size) { #//Run Gibbs Sampler for 1,500 repetitions.

y[i]<-rbeta(1,x[i-1]+a,n-x[i-1]+b)

x[i]<-rbinom(1,n,y[i])

}
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gibbsfx<-x1[1001:1500] #marginal density f(x)

hist(gibbsfx, breaks=seq(from =0, to=16,by=1),freq=TRUE,col="red",main="",xlab="")

hist(analyticfx,add=T,col=rgb(0,1,0,0.5))

axis(side=1, at=seq(0,16,1),labels=seq(0,16,1))

legend("topright", c("Gibbs", "Analytic", "overlap"), col=c("red", "green","dark green"), lwd=10)
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Chapter 8

Introduction to Bayesian Inference

This lecture is the first of a three lectures on Bayesian inference, Monte Carlo simu-
lation, and applications in Finance. We begin by discussing the basic components of
Bayesian statistical inference: the prior, the likelihood, and posterior distributions.
The lecture ends with discuss model verification, and forecasting.

8.1 Bayes Theorem

Given two events A and B, the conditional probability of event A given event B is,

P (A|B) =
P (A ∩B)

P (B)
(8.1.1)

The intersection of events A an B can be written in either of two ways,

P (A ∩B) = P (A|B)P (B)

P (A ∩B) = P (B|A)P (A)

Following Bayes we set these two equations equal to one another,

P (A|B) =
P (B|A)P (A)

P (B)
(8.1.2)

Equation 8.1.2 is Bayes theorem. It is a rule for calculating the conditional proba-
bility of event A given event B from the conditional probability of B given each A,
and the unconditional probabilities of A and B. Bayes theorem can be generalized
for multiple events, Ai for

P (Ai|B) =
P (Ai)P (B|Ai)
i=k∑
i=1

(B|Ai)P (Ai)

(8.1.3)

where P (B) > 0, and i = 1, . . . k.
Equation 8.1.3 is a good starting point for understanding the components of

Bayesian inference. P (Ai) is a prior probability in the sense that it summarizes
ones beliefs about the probability of event Ai before observing either event Ai
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150 CHAPTER 8. INTRODUCTION TO BAYESIAN INFERENCE

or event B. P (B|Ai) summarizes the likelihood of event B if event Ai occurs. The
denominator is the the marginal probability, P (B). Note that is is calculated as the
sum of the numerator quantities for all k events. It plays the role of a normalizing
constant, ensuring that the conditional probabilities sum to one. The term on the
left hand side of the equation, P (Ai|B) is the posterior probability of event Ai after
observing event B.

We can use Bayes Theorem for inference. Let y be a vector or matrix of data
and let θ be a vector or matrix of parameters for a model that seeks to explain y.
Using Bayes theorem we can write,

P (θ|y) =
p(θ)p(y|θ)
p(y)

(8.1.4)

where p(θ) is the prior distribution, p(y|θ) is the likelihood, and P (θ|y) is the pos-
terior distribution. The numerator of the right had side of ?? is the un-normalized
posterior. The normalizing constant is P (y) is typically referred to as the marginal
likelihood.

P (y) =

∫
θ

p(θ)p(y|θ)dθ (8.1.5)

Equation 8.1.4 shows us that Bayesian inference is an updating procedure whereby
prior beliefs of parameter values are updated based on observed data.

Definition: Kernel
If the probability density function of a random variable, y, can be written as p(y) =
kg(y), then g(y), is called the kernel of the function. The term k, which is the
portion of the equation that is not a function of y, is a numerical constant whose
role is to ensure that p(y) integrates to one. The kernel of the Binomial distribution
is 1

p(θ) ∝ θy(1− θ)n−y (8.1.6)

where N is the total number of trial and y is the number of successful trials. The
kernel of the Beta distribution is

p(y) ∝ yα−1(1− y)β−1 (8.1.7)

and k is the Beta function.
The kernel of the univariate Normal distribution is,

p(y) ∝ exp
[
(−τ/2)(y − µ)2

]
(8.1.8)

where τ = precision = 1/variance.

8.1.1 Specifying the Likelihood, p(y|θ)
The likelihood function, p(y|θ) describes the plausibility of a data set, y, given a
particular set of parameters, θ. For a set of n independent and identically distributed

1See section 8.6.3 for definitions of the distributions.
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(iid) observations data points, yi, i = 1, . . . , n the likelihood function is the product
of the densities of the n data points:

L(y|θ) = p(y1, y2, . . . , yn) =
n∏
i=1

f(yi|θ) (8.1.9)

Example 8.1. The likelihood function for a single coin toss can be written as a
Bernoulli,

p(yi|θ) = (θ)yi(1− θ)yi (8.1.10)

In the case of n independent coin tosses the likelihood function is,

p(yi|θ) =
∏

θyi(1− θ)yi = θ
∑
yi(1− θ)n−

∑
yi (8.1.11)

Example 8.2. Consider a single observation y from a Normal distribution with a
mean µ and variance σ2. For a single observation the likelihood function is,

p(y|θ) =
1√
2πσ

e
1

2σ2
(yi−µ)2 (8.1.12)

For a sequence of n iid observations of yi the likelihood is,

p(y|θ) =
1√
2πσ

e
1

2σ2

∑n
i=1(yi−µ)2 (8.1.13)

Now, consider a generalization of the univariate Normal distribution where the k-
dimensional vector Y = [y1, y2, . . . , yk] with mean µ and variance covariance matrix
Σ. Denote this vector as,

X ∼ N(µ,Σ) where, µ ∼ kx1,Σ ∼ kxk (8.1.14)

The probability density function of Y is,

p(Y |µ,Σ) =
1

2πk/2
|Σ|−1/2exp

[
− 1

2
(y − µ)′(y − µ)

]
(8.1.15)

Example 8.3. The likelihood for a finite mixture distribution is,

L(Y |πk, µk,Σk) =
∏
i

∑
i

πkφ(Y |µk,Σk) (8.1.16)

Where each k=1,...,K latent sub-distributions, and i = 1,...,N observations of yi.
The finite mixture model can be applied to any distribution. Consider the

following mixture of two bivariate Normal distributions. 2

f(µ,Σ|Y) = πφ(µ1,Σ1) + (1− π)φ(µ2,Σ2) (8.1.17)

L(µ,Σ|Y) =
N∏
i=1

[
πφ(µ1,Σ1) + (1− π)φ(µ2,Σ2)

]
(8.1.18)

where, for k = 1, 2

φ(y|µk,Σk) = (2π)0.5(|Σk|)−0.5e−0.5(yi−µk)′Σ(yi−µk) (8.1.19)
2See section 8.6.8 for a definition of the bivariate Normal distribution
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8.1.2 Specifying the Prior Distribution, p(θ)

The explicit use of a prior distribution in Bayesian inference is a key point of
distinction from classical regression analysis. The prior represents the modelers
beliefs about the unobserved parameters prior to observing the data. The choice of
a prior may be driven by a number of considerations.

1. In the absence of strong prior beliefs the modeler may choose a diffuse or
weakly informative prior.

2. Alternatively, lacking strong prior beliefs the modeler may try a host of dif-
ferent priors in the context of a sensitivity analysis.

3. The modeler may select a particular prior because it is a conjugate prior for
the likelihood function chosen for the analysis.

4. The problem under consideration may be best modeled with an hierarchical
prior.

Conjugate Priors

If the product of the prior and likelihood results in a posterior distribution in
the same family of distributions as the prior, then the prior is a conjugate prior.3

Working with conjugate priors makes Bayesian inference easier in the sense that
the functional form of the posterior distribution is known. 4 Table 8.1 contains a
list of commonly used conjugate priors and their likelihoods.

Likelihood Conjugate Prior
Bernoulli Beta
Binomial Beta
Poisson Gamma
Negative Binomial Beta
Multinomial Dirichlet
Normal with known variance, σ2 Normal
Normal with known mean, µ Inverse Gamma
Normal Normal Inverse Gamma
Multivariate Normal Normal-Wishart

Table 8.1: Likelihoods and Conjugate Priors

Example 8.4. The beta prior, binomial likelihood, and the beta posterior are an
obvious example of the benefits of using a conjugate. Given a binomial likelihood
and a prior that is Beta(α, β), the posterior Beta(y + α, n− y + β). This model is
typically referred to as the beta-binomial model.

p(θ) ∝ θα−1(θ)β−1 (8.1.20)

3Two distributions are in the same family if they have the same form and different parameters.
4But conjugate priors are not required for Bayesian inference.
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p(y|θ) ∝ θy(1− θ)n−y (8.1.21)

p(θ|y) ∝ θy+α−1(1− θ)n−y+β−1 (8.1.22)

Example 8.5. The Normal Gamma prior is used in the specification of the Bayesian
linear regression. Given a vector,Y, consisting of n IID observations, the likelihood
function assuming Normality is shown in equation 8.1.25.

Y = (y1, y2, . . . , yn) (8.1.23)

yi|µ, σ2 ∼ N(µ, σ2) (8.1.24)

L(µ, τ) =
n∏
i=1

1√
2π
τ

1
2 exp

[
− 1

2
τ(yi − µ)2

]
(8.1.25)

where µ is the mean, σ2 is the variance and τ = frac1σ2 is the precision. The
priors for the mean and precision are,

µ|σ2 ∼ N(µ0, n0σ
2) (8.1.26)

(8.1.27)

8.1.3 The Posterior

The posterior distribution is the product of the likelihood function and the prior
distribution. The result is a joint posterior distribution which can the be used eval-
uate the marginal distributions of each parameter. In instances where the posterior
distribution does not have an analytic solution simulation is used for analysis.

Note the conceptual difference between Bayesian inference and maximum likeli-
hood. ML selects the parameter set, θ, that maximizes the probability of observing
the actual sample of data, y, that we observe. Bayesian inference updates the
modelers prior beliefs regarding the distribution of the parameters based on the
observed data. The output from the ML approach is a set of point estimates of the
parameters. The output from the Bayesian approach is a joint distribution of the
parameters. As we will see later on in this Section, the posterior can be viewed as
a weighted average of the prior and likelihood.

A Beta-Binomial Example

Consider a coin tossing experiment, where θ = p(head) is distributed as Beta(α, β)
and the sampling distribution of heads and tails is Bin(n, θ) where n is the total
number of trials (heads + tails). We know from the discussion on conjugate pri-
ors that the posterior distribution is Beta. For this experiment the kernel of the
posterior is,

p(θ|y) ∝ θh+α−1(1− θ)t+β−1 (8.1.28)

where h is the number of heads and t is the number of tails. Since the posterior is
Beta(h+ α, t+ β) the expected value is,

E[θ|x] =
h+ α

α + β + n
(8.1.29)
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Let w = α+h
α+β+n

, then the expected value can be written as,

E[θ|x] = w
α

α + β
+ (1− w)

h

n
(8.1.30)

The expected value of the posterior estimate of θ is a weighted average of the
expected value of the prior distribution, and the average number of heads in the
trial data. The weight, w, represents the relative size of the prior in terms of the
number of trials. That is, α and β can be viewed as equivalent to the number of
heads and tails in the prior information. As the sample size increases, the relative
weight of the prior decreases, and the expected value of the posterior approaches
the maximum likelihood estimate θ̂ = h/n. Alternatively, as α→ 0 and β → 0 the
effective sample size of the prior goes to zero and the expected value of the posterior
mean approaches the MLE.

8.1.4 Normal-Gamma Inverse Model

8.2 Posterior Sampling

8.3 Model Verification

8.4 Forecasting

8.4.1 Non-informative Priors

8.5 Applications

8.5.1 Improving GDP Measurement

In this section we apply ffbs tp the estimation of mismeasurement in GDP as de-
scribed by Arouba et.al (2015). The sample period is to growth rates in real GDP
for the period through Q32018. We simulate for 60,000 iterations, and toss out the
first 30,000.The results are shown in Figures 8.2 to 8.4.

> mean(outdat[m:n,1])

mu: 2.95856

> mean(outdat[m:n,2])

rho: 0.6139805

> mean(outdat[m:n,3])

SigGG: 7.828538

> mean(outdat[m:n,4])

SigEE: 4.642055

> mean(outdat[m:n,5])

SigII: 2.556732

> mean(outdat[m:n,6])

SigGE: 1.762951
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Figure 8.1: Log Likelihood Surface - Grid Search

> mean(outdat[m:n,7])

SigGI: -0.07106606

> mean(outdat[m:n,8])

SigEI: -0.7500625

>
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Figure 8.2: Metropolis-Hastings Parameter Sequences

8.6 Distributions

In this section we define several of the distributions that we will be working with
throughout the lectures on Bayesian inference.

8.6.1 Bernoulli Distribution

A Bernoulli random variable y is a discrete random variable which takes the value
1 with probability θ, and 0 with probability 1 − θ. The probability mass function
is,

p(y|θ) = θyi(1− θ)1−yi (8.6.1)

. The mean and variance are defined as

E[y] = θ (8.6.2)

V ar[y] = θ(1− θ) (8.6.3)
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Figure 8.3: Metropolis-Hastings ACF of Parameter Draws

8.6.2 Binomial Distribution

If x1, x2, . . . xn are iid Bernoulli with success probability θ then
n∑
k=1

yi ∼ Binomial(n, θ) (8.6.4)

p(y|θ) =

(
n

y

)
θy(1− θn−y) (8.6.5)

where,

(
n

y

)
=

n!

y!(n− y)!
(8.6.6)

where n=number of trials, and y=number of successes. The mean and variance are
defined as

E[y] = nθ (8.6.7)

V ar[y] = nθ(1− θ) (8.6.8)

The binomial is the discrete probability distribution of the number of successes in
a sequence of n independent Bernoulli experiments each with a probability θ of
success. When n=1, the Binomial is Bernoulli.
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Figure 8.4: Metropolis-Hastings Parameter Density

8.6.3 Beta Distribution

The Beta is a family of continuous probability distributions defined on the interval
[0, 1]. The random variable y ∼ Beta(α, β) if 0 < y < 1 and

p(y|α, β) =
Γ(α + β)

Γ(α)Γ(β)
yα−1(1− y)β−1 (8.6.9)

where, Γ(α) = (α− 1)!. (8.6.10)

Where Γ(α+β)
Γ(α)Γ(β)

is the normalizing constant. It is defined as,

B[α, β] =
Γ(α + β)

Γ(α)Γ(β)
=

∫ 1

0

yα−1(1− y)β−1dy (8.6.11)

B[α, β] is called the Beta function. As illustrated in Figure 8.6, the beta density
can take on many shapes depending on the value of the two shape parameters alpha
and β.

• Beta(1/2,1/2) is u-shaped.
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Figure 8.5: GDE,GDI and smoothed GDP

• Beta(1,1) is the uniform distribution

• When α = β the distribution is symmetrical about 1/2.

The Beta distribution is a common choice for a prior distribution because it can
produce a wide variety of shapes. It is a conjugate prior for the Bernoulli distribu-
tion, meaning that the product of the Bernoulli likelihood and a Beta prior yields
a posterior with a Beta distribution . It is a conjugate prior in the sense that the
prior and posterior are in the same family.

Note that a Binomial(y, n) random variable is Beta(y + 1, n− y + 1).

8.6.4 Cauchy Distribution

The probability density function of the Cauchy distribution is (eq. 8.6.12):

f(x;x0, γ) =
1

πγ

[
1 +

(
x−x0
γ

)] (8.6.12)
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Figure 8.6: The Beta Distribution for Different Parameter Values

where x0 is a location parameter, and γ is a scale parameter. The Cauchy is
an interesting distribution in that the mean and all of the higher moments are
undefined. That is, the value of the integral for the expected value of Cauchy
random variable are undefined. The median and mode are defined, and are equal to
the location parameter x0. The student− t distribution with one degree of freedom
is Cauchy. The ratio of two independent standard Normal random variables is
Cauchy.

8.6.5 Gamma Distribution

The Gamma is typically used to model waiting time. i.e. time until failure The
density function for the Gamma distribution is:

p(y) =
yα−1e−βy

Γ(a)β−α
(8.6.13)

The mean and variance are:

E[y] =
α

β
(8.6.14)

V ar[y] =
α

β2
(8.6.15)

where y > 0, α > 0, and β > 0. The gamma family is a generalization of the
exponential family which is Gamma with α = 1. The χ2 distribution is gamma
α = ν/2 and α = 1/2 where ν is positive parameter, usually an integer. Figure
8.7 illustrates the variety of shapes that the Gamma family can assume. Note that
unlike the beta distribution, the range of the gamma distribution is unlimited for
positive values.
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Figure 8.7: The Gamma Distribution for Different Parameter Values

8.6.6 Negative Binomial Distribution

Given a sequence of Bernoulli trials, if we observe the sequence until a certain
number of successes, k, occurs, then the distribution of k will be negative binomial.
The density is:

p(y = k) =

(
k + r − 1

k

)
θk(1− θ)k (8.6.16)

Where k = number of successes and r = number of failures.

8.6.7 Normal Distribution

The probability density function for the Normal distribution is,

p(y|θ) =
1√
2πσ

e
1

2σ2
(yi−µ)2 (8.6.17)

where E[y] = µ and var(y) = σ2

8.6.8 Bivariate Normal

Let X1 and X2 be bivariate normal random variables, The bivariate density can be
written as,

(
X1

X2

)
∼ N

[(
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

)]
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where µ1 and µ2 are the mean of X1 and X2, respectively. Σi,j, i, j = 1, 2 are
the variance and covariance of X1 and X2. One of the properties of the bivariate
Normal distribution is that given the joint density of X1 and X2 there is a closed
form solution for the conditional densities X1 | X2 and X2 | X1. The converse also
holds, meaning that given the conditional densities we can write the joint density.
The conditional of X1 | X2 is defined as,

X1 | X2 = x2 ∼ N(µ1 + Σ12Σ−1
22 (x2 − µ2),Σ11 − Σ12Σ−1

22 Σ21) (8.6.18)

Figure 8.8 shows a bivariate Normal density with zero correlation between X1 and
X2.

Figure 8.8: Bivariate Normal Density

8.6.9 Pareto

The Pareto density function is,

f(x) =

1−
(
xm
x

)2

ifxm ≥ xm

0 ifx < xm
where xm is the minimum possible value of x. xm is the scale parameter, and α is
the shape parameter. Figure 8.9 shows the Pareto density function with xm = 1,
and α = 3.

E(x) =

{
αxm
xα+1 if α > 1

∞ if α ≤ 1
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Figure 8.9: Pareto Probability Density Function

V ar(x) =


(

αxm
xα−1

)2
α
α−2

if α > 2

∞ if α ∈ (1, 2]

In general the raw moments are defined as,

µ′ =

{
αxnm
xα−n

α
α−2

if α > n

∞ if α ≤ n

8.6.10 Scaled Inverse Chi-square

The density function for the scaled inverse chi-square is,

p(y) =
(ν/2)−ν/s

Γ(ν/2)
sνy−(ν/2+1)e−νs

2/(2y) (8.6.19)

where ν is degrees of freedom, s is scale, and y > 0. Figure 8.10 shows the scaled
inverse chi-square distribution for for sets of parameters. The positive range for y
makes this a good distribution for modeling variances.
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Figure 8.10: The Scaled Inverse Chi-Square for Different Parameter Values
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Chapter 9

Spectral Analysis

9.1 An Introduction to Spectral Analysis

Spectral analysis is a widely used method for analyzing time series data. It basically
involves describing a time series, xt, by comparing it to sets of sine and cosine curves.
By summing up sine and cosine curves with different amplitudes we can create an
artificial time series that resembles the series we observe. The first step in spectral
analysis is transform a data series from time domain to frequency domain. This is
done using the Fourier transform.

9.2 Fourier Transform

Fourier showed in 1807 that any periodic function can be rewritten as a weighted
sum of sines and cosines of different frequencies. The basic building block used in
the Fourier transform is the periodic process:

x = Asin(ωx+ φ)

where ω is the frequency and φ is the phase. Figure 9.1 shows two sine curves that
differ by π/2. The amplitude of the curve is the height to the peak. The phase
is the difference in the peaks of the two curves.A cycle is defined as one complete
period of a sine or cosine function defined over a time interval of length 2π.

Figure 9.1: Two sine curves: y = sin(x) and y = sin(x+ π/2)
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Given a time series f(t) we can transform it to frequency domain F (ω) using the
continuous Fourier transform. The Fourier transform of a value that is a function
of time returns a value that is a function of frequency, ω. This equation is called
the synthesis equation.

F (ω) =

∫ +∞

ω=−∞
f(t)e−2πiωtdω (9.2.1)

e2πiωt = cos(2πωt) + isin(2πωt) (9.2.2)

where i is the imaginary component of a complex number. For every ω from 0 to
infinity, F (ω) contains the amplitude A and phase φ of the corresponding periodic
process, Asin(ωx+ φ).

Let’s spend some time trying to understand these equations. First, note that
even if f(t) real the Fourier transform will probably be complex. A complex number
z, can be written as the sum of real part x, and imaginary parts, y:

z = x+ iy

In addition we can make use of Euler’s identity which states that,

eiθ = cosθ + isinθ

Finally note the polar form of a complex number is a more common representation.

z = |z|eiθ

where |z| is the magnitude,

|z| = |x+ iy| =
√
x2 + y2

Using Euler’s identity the polar form can be written in real and imaginary parts.
We see that the real part is a cosine function and the imaginary part is a sine
function.

x = R[|z|eiθ] = |z|cosθ
y = Im[|z|eiθ] = |z|sinθ

9.2.1 Spectral Density

The spectral density is the Fourier transform of the autocovariance function. If a
time series xt has an autocovariance, γ satisfying

+∞∑
k=−∞

|γ(k)| <∞

then the spectral density is defined as

f(ω) =
+∞∑

k=−∞
γ(k)e−2πωk

for −∞ < ω < +∞
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Properties

1. f(ω) = |
+∞∑

k=−∞
γ(k)e−2πωk| <∞

2. f is periodic with a period of one which means that we can restrict the domain
of f to −1/2 ≤ ω ≤ +1/2.

3. f(ω) = f(−ω)

4. f(ω) ≥ o

5. γ(k) =
∫ +1/2

−1/2
e2πiωkf(ω)dω

White Noise Process
Let et be a white noise process. The variance γ(0) = σ2

e and γ(k) = 0 for k 6= 0.
The spectral density is:

f(ω) =
∞∑

k=−∞
γ(k)e−2πiωk = γ(0) = σte

The spectral density is constant across all frequencies.
AR(1) Process
Now, let’s consider the spectral density of an AR(1).

xt = φ1xt−1 + et
γ(k) = σ2

e
φk

(1−φk)

f(ω) =
∞∑

k=−∞
γ(k)e−2πiωk = σ2

e

1−2φcos(2πω)
+ φk

• If φ > 0 the process has positive autocorrelation. It is dominated by low
frequency components. This is illustrated in Figure 9.2 where the time series
and periodogram for xt = 0.7 ∗ xt−1 + et are shown. The periodogram is
negtively correlated with the frequency.

• if φ < 0 the spectrum is dominated by high frequency components. This is
illustrated in Figure 9.3. In this example the process is xt = −0.7xt−1 + et.
The frequenct is positively correlated with the periodogram

MA(1) Process
The spectral density for the MA(1) process xt = et + φet−1 is:

f(ω) = σ2
e(1+2φcosω+φ2)

2π

If φ > 0 the spectral density is maximal at ω=0. If φ < 0 the spectral desnity is
minimal at ω = 0.
Periodogram
The periodogram is the sample analog of the spectral density.
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Figure 9.2: Periodogram of AR(1) with positive coefficient

Figure 9.3: Periodogram of AR(1) with negative coefficient



Chapter 10

Wavelets

10.1 Introduction

This lecture introduces the wavelt transform. Wavelet transforms or filters are a
mathematical technique that have been used in economics and finance for about 20
years, but have yet to become a mainstream econometric tool. It’s unfortunate as
wavelets can offer important insight into the dynamics of a time series.

The wavelet transform can be applied in both continuous and discrete form.
The continuous wavelet transform (CWT) can be used to examine the power or
variance of a single series across time and frequency, or the coherence of two series
across time and frequency. The discrete wavelet transform (DWT) is a selective
sample of the CWT at the scale level which results in a set of scale level time series.

Figure 10.2 contains annual returns for the S & P 500 from 1928 - 2016. The
series shows a relatively high degree of variation, and it is somewhat difficult to
discern the periods with the greatest volatility. Now, let’s compare the time series
of returns to wavelet power of the series which

is an example of a continuous wavelet transform. The wavelet power function
(WPF) displays the energy of a times series. In Figure 10.2 the horizontal axis is
in units of time, and the vertical axis shows periodicity measured in years. Dark
blue indicates low oscillations and deep red indicates very high oscillations. The
WPF shows that the strongest oscillation in market returns are the range of 1 to
8 years and occurred at the start of the Great Recession in 1929 to 1930. Market
oscillations during the Great Repression (2008-2009) was mild in comparison. There
is also a period of relatively high oscillations in the mid-1970’s at a periodicity of 4
years.

Figure 10.3 show the multiresolution of the series of returns for the S & P
500. The return series has been transformed into 4 time series, each representing a
different scale.

This chapter describes the wavelet transform and presents examples along with
code. The first section describes the continuous wavelet transform, and the sec-
ond section describes the discrete wavelet transform. The third section contains
applications which include an example of wavelet coherence using the CWT, and
calculation of the wavelet CAPM beta using the discrete wavelet transform (DWT).
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Figure 10.1: S & P 500 Returns, Annual Returns

Figure 10.2: Wavelet Power Spectrum - S & P 500 Returns
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Figure 10.3: Multiresolution Analysis - S & P 500 Returns

10.2 The Discrete Wavelet Filter

It is intuitive to think of the wavelet transform in terms of a filter on the time series
Xt. Let

hl = [h0, h1, ..., hL−1)

be a discrete finite length wavelet filter with the following properties:

L−1∑
l=0

hl = 0, (1)

L−1∑
l=0

h2
l = 1, (2) unit energy

L−1∑
l=0

hlhl+2n = 0, (3) orthogonality to even shifts

Condition (3), which states that the wavelet filters are orthogonal to even shifts, is
needed to construct the orthonormal matrix that defines the DWT.

Conditions (2) and (3) can be expressed in terms of the squared gain func-
tion which shows the relationship between wavelet filters and the discrete Fourier
transform (DFT):

H(f) +H(f + 2) = 2

where H(f) is the the squared gain function for the transfer function H(f), defined
as:
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H(f) ≡
∞∑

t=−∞
hle
−i2πfl =

L−1∑
l=0

hle
−i2πfl

This last equation expresses the wavelet filter as a high pass filter (DFT). (Why?)
Finally, the orthogonality and unit energy conditions for the wavelet can be

expressed in terms the inverse DFT:

∞∑
l=−∞

hlhl+2n =

∫ 1/2

−1/2

ei2πfndf =

{
1, n = 0

0, n = ...,−2,−2, 1, 2, ...

The wavelet coefficients associated with the unit scale are found by circularly
filtering Xt : t = 0, ..., N − 1 with ht and keeping every other value, where N ≡ 2J .
The result is as follows:

21/2W̃1,t ≡
L−1∑
l=0

hlXt−lmodN , t=0,...,N-1.

The wavelet coefficients for unit scale are defined as

W1,t ≡ 21/2W̃1,t ≡
L−1∑
l=0

hlX2t+1−lmodN , t = 0, ..., N
2
− 1.

The first subscript, which is one above, refers to the scale. The scale is defined as
τj = 2j−1.1

10.3 The Discrete Wavelet Transform (DWT)

We can define the discrete wavelet transform in matrix notation as follows: Let
W = WX, where W is a column vector of length N = JN containing wavelet
coefficients, and W is an NxN matrix that defines the DWT and has the property
WTW = IN .

The vector of wavelet coefficients, w, can be written as J+1 vectors,

W = [W1,W2, ...,WJ,VJ]T

where Wj is vector of wavelet coefficients of length N/2j, and VJ is a vector of
scaling coefficients of length N/2j.

The matrix W is made up of wavelet and scaling coefficients arranged by row.
The first N/2 rows of W, denoted W1, are populated with the elements of W1,t.

Since W1 = W1X where W1 is an N/2 × N matrix consisting of the first N/2
rows of W , the definition of W1 implies a definition of W1.

Let

h1 = [h1,N−1, h1,N−2, ..., h1,1, h1,0]T

1The procedure of taking every other value of the filter output is referred to as downsampling
by two.
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be the vector of unit scale wavelet filter coefficients in reverse order. The wavelet
coefficients come from an orthonormal wavelet family of length L with all values in
the range L < t < N set to zero.

Next, shift the coefficients in h1 by factors of two, so for example

h
(2)
1 = [h1,1, h1,0, ..., h1,3, h1,2]T

h
(4)
1 = [h1,3, h1,2, ..., h1,5, h1,4]T

Do this shift to create N/2 shifted versions of h1. Define the N/2 x N matrix W1

as the matrix of the shifted versions of h1, so that

W1 = [h
(2)
1 ,h

(4)
1 , ...,h

(N/2−1)
1 ,h1]T

Next, define h2 as the vector of scale 2 wavelet filter coefficient in a similar manner
to the definition of h1, and construct W2 by circularly shifting by factors of four.
Repeat this procedure to construct Wj by circularly shifting by factors of 2j. The

matrix vj is defined a a column vector whose elements are all equal to 1/
√

(N).
The N x N matrix W is as follows:

WT = [W1,W2, . . . ,WJ ,VJ ]

The DWT of X is an orthonormal transform, which implies that X = WTw and
||w||2 = ||X||2. The energy of the time series, X (measured by the squared norm),
is equal to the energy of the wavelet coefficients. W 2

n is a measure of the energy
attributable to the nth DWT coefficient.

The wavelet transform is composed of a father wavelet and a set of mother
wavelets. Given a function Φ, the father wavelet for the discrete transform is de-
fined as:

ΦJ,k2
−J

2 Φ t−2J∗k
2J

(2)∫
Φ(t)dt = 1

The mother wavelets, also in discrete form, are defined as:

Ψj,k 2−
j
2 Ψ t−2j∗k

2j
, j = 1, ..., J (3)∫

Ψ(t)dt = 0

Where J is the number of scales or levels,2J is a scale factor and k is the time
domain index.

The father and mother wavelets are each indexed by both scale and time. It is
precisely this dual indexing that makes wavelet analysis appealing since as a time
series, f(t), is represented as a linear combination of wavelet functions that are
localized in space and time.
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The scale parameter is inversely proportional to frequency.2 The father and
mother wavelet functions may also be represented as filters. In this alternative
representation the father wavelet is a low pass filter, and the mother wavelets are
high pass filters.3 We can use the wavelet functions to transform a time series, f(t),
into a series of wavelet coefficients,

SJ ,k =

∫
f(t)ΦJ ,k (4)

and,

dj,k =

∫
f(t)Ψj,k j=1,...,J (5)

Where SJ ,k are the coefficients for the father wavelet at the maximal scale, 2J ,
and the dj,k, are the coefficients of the mother wavelets at the scales from 1 to
2J . The dj,k are referred to as the detailed coefficients and the sJ ,k are referred
to as the smooth coefficients. Applying the transforms results in a time series
of length k of smooth coefficients at the maximal scale J, and J time series of
detailed coefficients each of length k. If there are 6 scales, the frequency of the
first scale is associated with the interval [1/4,1/2], and the frequency of scale 6 is
associated with the interval [1/128, 1/64]. For a monthly time series decomposing
into six scales (D1-D6) corresponds to periods 2-4, 4-8, 8-16, 16-32, 32-64, and 64-
128 months. The smooth component (S6) captures the trend of the original series.
The high frequency component is associated with the shortest scale D1, while the
low frequency component is associated with the longest scale D6.

Given the smooth and detailed coefficients, a time series f(t) can be represented
in decomposed form, known as the multi-resolution analysis of f(t), as follows:

f(t) = ΣkSJ ,k ΦJ ,k (t) + ΣkdJ , kΨJ ,k (t) + ...+ Σkdj,k Ψj,k (t) + ...+ Σkd1,k Ψ1,k (t)
(6)

Or, using summary notation,

f(t) = SJ +DJ +DJ−1 + ...+D1

The discrete wavelet transform decomposes a time series into orthogonal signal
components at different scales. Sj is a smooth signal, and each Dj is a signal of
higher detail. The number of coefficients differs by scale. If the length of the data
series is n, and divisible by 2J , there are n/2j dj,k coefficients at scale j=1,...,J-1.
At the coarsest scale there are n/2J dJ ,k and sJ ,k coefficients. The wavelet variance
at each scale is captured as the wavelet power of each scale.

2See Gencay, et al. 2010, pp. 99-103 for a complete discussion.
3See Ramsey (2002).
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10.4 The Continuous Wavelet Transform

The continuous wavelet transform (CWT) is also useful for gaining insight into the
time-scale characteristics of a time series. The CWT is defined as,

W (λ, t) =

∫
+∞

−∞
Ψλ,t (u)x(u)du (7)

where, Ψλ,t (u) ≡ 1√
λ
Ψ
(
u−t
λ

)
As noted by Ramsey, the main difference between the CWT and DWT is that the
CWT considers continuous variations in the scale (λ) and time components (t).
The discrete wavelet transform can be derived independently of the CWT, but it
can also be viewed as a critical sampling of the CWT with λ = 2−j and t = k2−j .

The wavelet power spectrum which measures the local variance of a time se-
ries at different scales is defined as |W (λ, t)2|, and aids our analysis in terms of
understanding how periodic components evolve over time when applied to the mar-
ket, as well as, the eleven sectors examined in our analysis. A clear advantage
that the CWT has over the discrete transform is that it produces a powerful vi-
sual for detecting time-scale patterns. The wavelet power spectrum is helpful for
understanding how the power varies with the scaling of the wavelet. But we also
need to understand how periodic components evolve jointly over time. The Fourier
coherency identifies frequency bands where two time series are related, while the
wavelet coherency identifies both frequency bands and time intervals when time
series are related. The wavelet coherence of two series, x and y, is a measure of
co-movement across time and scale based on the CWT. To define it we need the
definition of two other measures, the cross wavelet transform (XWT) and the cross
wavelet power (XWP). The XWT is defined as

Wxy = Wx(λ, t)Wy∗(λ, t) (8)

The XWP is the defined as the absolute value of the XWT, |Wxy(λ, t)| . It
measures the local covariance of x and y at different time scales. The XWP iden-
tifies areas in time-scale space where the two series have high common power. In
addition to identifying the common power of two time series, we are also interested
in identifying areas of co-movement in time-scale space, even if the cross wavelet
power is low. A measure of co-movement, the wavelet coherence, is defined as:

R2(λ, t) = |S(S−1Wxy(λ,t))|2
S(S−1|Wx(λ,t)|2)∗S(S−1|Wxy(λ,t)|2)

(9)

Where S is a smoothing operator in time and scale, and 0 ≤R2(λ, t)≥ 1. The
wavelet coherence is similar to the correlation coefficient, and is typically interpreted
as a localized correlation in time-scale space.
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